Properties

Label 6.149...747.18t51.a
Dimension $6$
Group $C_3^2 : D_{6} $
Conductor $1.498\times 10^{13}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:\(14976383310747\)\(\medspace = 3^{3} \cdot 863^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.1.17353862469.1
Galois orbit size: $1$
Smallest permutation container: 18T51
Parity: odd
Projective image: $C_3^2:D_6$
Projective field: Galois closure of 9.1.17353862469.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{3} + x + 28 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 3 + 25\cdot 31 + 4\cdot 31^{2} + 12\cdot 31^{3} + 18\cdot 31^{4} + 17\cdot 31^{5} + 6\cdot 31^{6} + 29\cdot 31^{7} + 5\cdot 31^{8} + 5\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a^{2} + 14 a + 19 + \left(27 a^{2} + 7 a + 28\right)\cdot 31 + \left(24 a^{2} + 20 a + 26\right)\cdot 31^{2} + \left(4 a^{2} + 21 a + 23\right)\cdot 31^{3} + \left(26 a^{2} + 4 a + 27\right)\cdot 31^{4} + \left(18 a^{2} + 17 a + 22\right)\cdot 31^{5} + \left(21 a^{2} + 22 a + 24\right)\cdot 31^{6} + \left(9 a^{2} + 2 a + 16\right)\cdot 31^{7} + \left(10 a^{2} + 25 a + 27\right)\cdot 31^{8} + \left(19 a^{2} + 28 a + 12\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 25 a^{2} + 24 a + 27 + \left(16 a^{2} + 25 a\right)\cdot 31 + \left(25 a^{2} + 12 a + 17\right)\cdot 31^{2} + \left(13 a^{2} + 22 a + 19\right)\cdot 31^{3} + \left(24 a^{2} + 6 a + 26\right)\cdot 31^{4} + \left(4 a^{2} + 15 a + 23\right)\cdot 31^{5} + \left(28 a^{2} + 9 a + 18\right)\cdot 31^{6} + \left(2 a^{2} + 3 a + 22\right)\cdot 31^{7} + \left(28 a^{2} + 14 a + 18\right)\cdot 31^{8} + \left(16 a^{2} + 4 a + 21\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 13 + 24\cdot 31 + 12\cdot 31^{2} + 8\cdot 31^{3} + 8\cdot 31^{5} + 16\cdot 31^{6} + 13\cdot 31^{7} + 6\cdot 31^{8} + 15\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a^{2} + 9 a + 10 + \left(25 a^{2} + 7 a + 27\right)\cdot 31 + \left(22 a^{2} + 27 a + 4\right)\cdot 31^{2} + \left(7 a^{2} + 8 a + 5\right)\cdot 31^{3} + \left(27 a^{2} + 18 a + 18\right)\cdot 31^{4} + \left(9 a^{2} + 4 a + 6\right)\cdot 31^{5} + \left(12 a^{2} + 23 a + 8\right)\cdot 31^{6} + \left(a^{2} + 11 a + 11\right)\cdot 31^{7} + \left(9 a^{2} + 14 a + 16\right)\cdot 31^{8} + \left(14 a^{2} + 19 a + 9\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 5 a^{2} + 11 a + 24 + \left(14 a^{2} + 5 a + 19\right)\cdot 31 + \left(3 a^{2} + 9 a + 12\right)\cdot 31^{2} + \left(10 a^{2} + 22 a + 27\right)\cdot 31^{3} + \left(12 a^{2} + a + 28\right)\cdot 31^{4} + \left(18 a^{2} + 29 a + 1\right)\cdot 31^{5} + \left(17 a^{2} + 25 a + 22\right)\cdot 31^{6} + \left(14 a^{2} + 24 a + 9\right)\cdot 31^{7} + \left(2 a^{2} + 15 a + 22\right)\cdot 31^{8} + \left(24 a^{2} + 25 a + 5\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 15 + 12\cdot 31 + 13\cdot 31^{2} + 10\cdot 31^{3} + 12\cdot 31^{4} + 5\cdot 31^{5} + 8\cdot 31^{6} + 19\cdot 31^{7} + 18\cdot 31^{8} + 10\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 3 a^{2} + 8 a + 2 + \left(9 a^{2} + 16 a + 6\right)\cdot 31 + \left(14 a^{2} + 14 a + 30\right)\cdot 31^{2} + \left(18 a^{2} + 1\right)\cdot 31^{3} + \left(8 a^{2} + 8 a + 16\right)\cdot 31^{4} + \left(2 a^{2} + 9 a + 1\right)\cdot 31^{5} + \left(28 a^{2} + 16 a + 29\right)\cdot 31^{6} + \left(19 a^{2} + 16 a + 2\right)\cdot 31^{7} + \left(11 a^{2} + 22 a + 18\right)\cdot 31^{8} + \left(28 a^{2} + 13 a + 8\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( a^{2} + 27 a + 11 + \left(30 a + 10\right)\cdot 31 + \left(2 a^{2} + 8 a + 1\right)\cdot 31^{2} + \left(7 a^{2} + 17 a + 15\right)\cdot 31^{3} + \left(25 a^{2} + 22 a + 6\right)\cdot 31^{4} + \left(7 a^{2} + 17 a + 5\right)\cdot 31^{5} + \left(16 a^{2} + 26 a + 21\right)\cdot 31^{6} + \left(13 a^{2} + 2 a + 29\right)\cdot 31^{7} + \left(a + 20\right)\cdot 31^{8} + \left(21 a^{2} + a + 3\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(4,6)(7,9)$
$(1,4)(3,6)(5,8)$
$(1,3,5)(2,7,9)(4,6,8)$
$(1,4,7)(2,5,8)(3,6,9)$
$(1,7,4)(3,6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,4)(3,6)(5,8)$ $0$
$9$ $2$ $(1,3)(4,6)(7,9)$ $-2$
$9$ $2$ $(1,6)(3,4)(5,8)(7,9)$ $0$
$2$ $3$ $(1,4,7)(2,5,8)(3,6,9)$ $-3$
$6$ $3$ $(1,3,5)(2,7,9)(4,6,8)$ $0$
$6$ $3$ $(1,7,4)(2,5,8)$ $0$
$12$ $3$ $(1,6,8)(2,4,9)(3,5,7)$ $0$
$18$ $6$ $(1,6,5,4,3,8)(2,7,9)$ $0$
$18$ $6$ $(1,6,7,3,4,9)(2,5,8)$ $1$
$18$ $6$ $(1,8,7,2,4,5)(3,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.