Properties

Label 6.3e3_7e2_67e2.9t18.2
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 3^{3} \cdot 7^{2} \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$5938947= 3^{3} \cdot 7^{2} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{6} - 4 x^{3} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 36 + 27\cdot 61 + 3\cdot 61^{2} + 38\cdot 61^{3} + 38\cdot 61^{4} + 29\cdot 61^{5} + 36\cdot 61^{6} + 24\cdot 61^{7} + 23\cdot 61^{8} + 42\cdot 61^{9} + 16\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 44 a^{2} + 3 a + 2 + \left(48 a^{2} + 14 a + 24\right)\cdot 61 + \left(23 a^{2} + 7 a + 9\right)\cdot 61^{2} + \left(14 a^{2} + 42 a + 6\right)\cdot 61^{3} + \left(49 a^{2} + 46 a + 6\right)\cdot 61^{4} + \left(10 a^{2} + 49 a + 30\right)\cdot 61^{5} + \left(42 a^{2} + 33 a + 54\right)\cdot 61^{6} + \left(13 a^{2} + 48 a + 2\right)\cdot 61^{7} + \left(58 a^{2} + 38 a + 48\right)\cdot 61^{8} + \left(55 a^{2} + 42 a + 57\right)\cdot 61^{9} + \left(49 a^{2} + 34 a + 49\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 22 a^{2} + 13 a + 1 + \left(23 a^{2} + 6 a + 48\right)\cdot 61 + \left(37 a^{2} + 5 a + 11\right)\cdot 61^{2} + \left(45 a^{2} + 56 a + 50\right)\cdot 61^{3} + \left(41 a^{2} + 36 a + 11\right)\cdot 61^{4} + \left(28 a^{2} + 30 a + 32\right)\cdot 61^{5} + \left(3 a^{2} + 18 a + 36\right)\cdot 61^{6} + \left(60 a^{2} + 58 a + 56\right)\cdot 61^{7} + \left(10 a^{2} + 35 a + 30\right)\cdot 61^{8} + \left(17 a^{2} + 18 a + 39\right)\cdot 61^{9} + \left(12 a^{2} + 58 a + 16\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 45 + 44\cdot 61 + 11\cdot 61^{2} + 46\cdot 61^{3} + 53\cdot 61^{4} + 7\cdot 61^{5} + 53\cdot 61^{6} + 21\cdot 61^{7} + 29\cdot 61^{8} + 49\cdot 61^{9} + 32\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 55 a^{2} + 19 a + 33 + \left(20 a^{2} + 27 a + 36\right)\cdot 61 + \left(33 a^{2} + 8 a + 33\right)\cdot 61^{2} + \left(43 a^{2} + 12 a + 40\right)\cdot 61^{3} + \left(26 a^{2} + 23 a + 2\right)\cdot 61^{4} + \left(36 a^{2} + a + 48\right)\cdot 61^{5} + \left(56 a^{2} + 47 a + 60\right)\cdot 61^{6} + \left(48 a^{2} + 51 a + 24\right)\cdot 61^{7} + \left(42 a^{2} + 50 a + 57\right)\cdot 61^{8} + \left(20 a^{2} + 54 a + 55\right)\cdot 61^{9} + \left(26 a^{2} + 33 a\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 58 a^{2} + a + 47 + \left(54 a^{2} + 50 a + 32\right)\cdot 61 + \left(52 a^{2} + 49 a + 43\right)\cdot 61^{2} + \left(35 a^{2} + 4 a + 4\right)\cdot 61^{3} + \left(22 a^{2} + 2 a + 24\right)\cdot 61^{4} + \left(3 a^{2} + 19 a + 56\right)\cdot 61^{5} + \left(24 a^{2} + 30\right)\cdot 61^{6} + \left(21 a^{2} + 27 a + 18\right)\cdot 61^{7} + \left(43 a^{2} + 7 a + 19\right)\cdot 61^{8} + \left(49 a^{2} + 51 a + 8\right)\cdot 61^{9} + \left(29 a^{2} + 49 a + 17\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 41 + 49\cdot 61 + 45\cdot 61^{2} + 37\cdot 61^{3} + 29\cdot 61^{4} + 23\cdot 61^{5} + 32\cdot 61^{6} + 14\cdot 61^{7} + 8\cdot 61^{8} + 30\cdot 61^{9} + 11\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 23 a^{2} + 39 a + 26 + \left(52 a^{2} + 19 a\right)\cdot 61 + \left(3 a^{2} + 45 a + 18\right)\cdot 61^{2} + \left(3 a^{2} + 6 a + 14\right)\cdot 61^{3} + \left(46 a^{2} + 52 a + 52\right)\cdot 61^{4} + \left(13 a^{2} + 9 a + 43\right)\cdot 61^{5} + \left(23 a^{2} + 41 a + 6\right)\cdot 61^{6} + \left(59 a^{2} + 21 a + 33\right)\cdot 61^{7} + \left(20 a^{2} + 32 a + 16\right)\cdot 61^{8} + \left(45 a^{2} + 24 a + 8\right)\cdot 61^{9} + \left(45 a^{2} + 53 a + 10\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 42 a^{2} + 47 a + 13 + \left(43 a^{2} + 4 a + 41\right)\cdot 61 + \left(31 a^{2} + 6 a + 5\right)\cdot 61^{2} + \left(40 a^{2} + 6\right)\cdot 61^{3} + \left(57 a^{2} + 22 a + 25\right)\cdot 61^{4} + \left(28 a^{2} + 11 a + 33\right)\cdot 61^{5} + \left(33 a^{2} + 42 a + 54\right)\cdot 61^{6} + \left(40 a^{2} + 36 a + 46\right)\cdot 61^{7} + \left(6 a^{2} + 17 a + 10\right)\cdot 61^{8} + \left(55 a^{2} + 52 a + 13\right)\cdot 61^{9} + \left(18 a^{2} + 13 a + 27\right)\cdot 61^{10} +O\left(61^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(3,8)(5,9)$
$(1,3,8)(2,4,6)(5,7,9)$
$(2,5)(4,7)(6,9)$
$(1,4,7)(2,5,8)(3,6,9)$
$(2,5,8)(3,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,6)(3,8)(5,9)$ $2$
$9$ $2$ $(2,5)(4,7)(6,9)$ $0$
$9$ $2$ $(2,9)(3,8)(4,7)(5,6)$ $0$
$2$ $3$ $(1,4,7)(2,5,8)(3,6,9)$ $-3$
$6$ $3$ $(1,3,8)(2,4,6)(5,7,9)$ $0$
$6$ $3$ $(2,5,8)(3,9,6)$ $0$
$12$ $3$ $(1,9,8)(2,4,3)(5,7,6)$ $0$
$18$ $6$ $(1,4,7)(2,9,8,6,5,3)$ $-1$
$18$ $6$ $(1,3,8)(2,7,6,5,4,9)$ $0$
$18$ $6$ $(1,9,4,6,7,3)(2,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.