Properties

Label 6.3e3_79e4.7t4.1
Dimension 6
Group $F_7$
Conductor $ 3^{3} \cdot 79^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$F_7$
Conductor:$1051652187= 3^{3} \cdot 79^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - 6 x^{4} - 9 x^{3} - 8 x^{2} - 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_7$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + 4 a + \left(9 a^{2} + 3 a + 11\right)\cdot 13 + \left(7 a^{2} + a + 2\right)\cdot 13^{2} + \left(a^{2} + 7 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 11 a + 7\right)\cdot 13^{4} + \left(12 a^{2} + 11 a + 5\right)\cdot 13^{5} + \left(11 a^{2} + 9 a + 7\right)\cdot 13^{6} + \left(11 a^{2} + 11 a + 11\right)\cdot 13^{7} + \left(10 a^{2} + 10 a + 2\right)\cdot 13^{8} + \left(a + 2\right)\cdot 13^{9} + \left(3 a^{2} + 5 a + 6\right)\cdot 13^{10} + \left(10 a^{2} + 8 a + 6\right)\cdot 13^{11} + \left(11 a^{2} + 10 a + 2\right)\cdot 13^{12} + \left(11 a^{2} + 6 a + 2\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 12 a + 2 + \left(9 a^{2} + 6 a + 1\right)\cdot 13 + \left(3 a^{2} + 12 a + 10\right)\cdot 13^{2} + \left(4 a^{2} + 2 a + 4\right)\cdot 13^{3} + \left(12 a^{2} + 3 a + 3\right)\cdot 13^{4} + \left(3 a^{2} + 3 a + 11\right)\cdot 13^{5} + \left(6 a^{2} + 3 a + 4\right)\cdot 13^{6} + \left(6 a^{2} + 7 a + 4\right)\cdot 13^{7} + \left(4 a^{2} + 6 a + 2\right)\cdot 13^{8} + \left(4 a^{2} + 3 a + 5\right)\cdot 13^{9} + \left(8 a^{2} + 2 a\right)\cdot 13^{10} + \left(6 a^{2} + 5 a + 2\right)\cdot 13^{11} + \left(5 a^{2} + 9 a + 10\right)\cdot 13^{12} + \left(12 a^{2} + 4 a + 12\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 1 + \left(3 a^{2} + 10 a + 2\right)\cdot 13 + \left(11 a^{2} + 3 a + 3\right)\cdot 13^{2} + \left(8 a^{2} + 7 a + 3\right)\cdot 13^{3} + \left(a^{2} + 9 a + 2\right)\cdot 13^{4} + \left(2 a^{2} + 3 a + 5\right)\cdot 13^{5} + 2 a\cdot 13^{6} + \left(9 a^{2} + 3 a + 12\right)\cdot 13^{7} + \left(4 a^{2} + 8 a + 11\right)\cdot 13^{8} + \left(a^{2} + 3 a + 2\right)\cdot 13^{9} + \left(5 a^{2} + 11 a\right)\cdot 13^{10} + \left(10 a^{2} + 5 a + 11\right)\cdot 13^{11} + \left(7 a^{2} + 11 a + 5\right)\cdot 13^{12} + \left(8 a^{2} + 9 a + 6\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 11 a + 12 + \left(11 a + 10\right)\cdot 13 + \left(a^{2} + a + 10\right)\cdot 13^{2} + \left(7 a^{2} + 4 a + 12\right)\cdot 13^{3} + \left(6 a^{2} + a + 12\right)\cdot 13^{4} + \left(8 a^{2} + a + 12\right)\cdot 13^{5} + \left(a^{2} + 10 a + 2\right)\cdot 13^{6} + \left(a^{2} + 7 a + 10\right)\cdot 13^{7} + \left(3 a^{2} + 5 a + 4\right)\cdot 13^{8} + \left(a^{2} + 12 a + 5\right)\cdot 13^{9} + \left(9 a^{2} + 8 a + 1\right)\cdot 13^{10} + \left(5 a^{2} + 3 a + 5\right)\cdot 13^{11} + a^{2}13^{12} + \left(11 a^{2} + 11 a + 11\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 3 a + 2 + \left(12 a + 7\right)\cdot 13 + \left(7 a^{2} + 7 a + 10\right)\cdot 13^{2} + \left(2 a^{2} + 11 a + 7\right)\cdot 13^{3} + \left(9 a^{2} + 4 a + 3\right)\cdot 13^{4} + \left(11 a^{2} + 10 a + 9\right)\cdot 13^{5} + 5\cdot 13^{6} + \left(5 a^{2} + 11 a + 2\right)\cdot 13^{7} + \left(10 a^{2} + 6 a + 2\right)\cdot 13^{8} + \left(10 a^{2} + 7 a + 11\right)\cdot 13^{9} + \left(4 a^{2} + 9 a + 12\right)\cdot 13^{10} + \left(5 a^{2} + 11 a + 12\right)\cdot 13^{11} + \left(6 a^{2} + 3 a + 3\right)\cdot 13^{12} + \left(5 a^{2} + 9 a + 2\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 11 + 13 + 7\cdot 13^{2} + 2\cdot 13^{3} + 13^{5} + 10\cdot 13^{6} + 12\cdot 13^{7} + 6\cdot 13^{8} + 11\cdot 13^{9} + 12\cdot 13^{10} + 2\cdot 13^{11} + 5\cdot 13^{12} +O\left(13^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 3 a + 12 + \left(2 a^{2} + 7 a + 4\right)\cdot 13 + \left(8 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(a^{2} + 5 a + 5\right)\cdot 13^{3} + \left(7 a^{2} + 8 a + 9\right)\cdot 13^{4} + \left(8 a + 6\right)\cdot 13^{5} + \left(5 a^{2} + 12 a + 7\right)\cdot 13^{6} + \left(5 a^{2} + 10 a + 11\right)\cdot 13^{7} + \left(5 a^{2} + 7\right)\cdot 13^{8} + \left(7 a^{2} + 10 a\right)\cdot 13^{9} + \left(8 a^{2} + a + 5\right)\cdot 13^{10} + \left(4 a + 11\right)\cdot 13^{11} + \left(6 a^{2} + 3 a + 10\right)\cdot 13^{12} + \left(2 a^{2} + 10 a + 3\right)\cdot 13^{13} +O\left(13^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,7)(3,6,4)$
$(1,6)(2,4)(3,7)$
$(1,5,6,4,7,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$7$ $2$ $(1,6)(2,4)(3,7)$ $0$
$7$ $3$ $(1,2,7)(3,6,4)$ $0$
$7$ $3$ $(1,7,2)(3,4,6)$ $0$
$7$ $6$ $(1,6,3,2,7,5)$ $0$
$7$ $6$ $(1,5,7,2,3,6)$ $0$
$6$ $7$ $(1,5,6,4,7,3,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.