Properties

Label 6.3e3_43e3_1249e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 3^{3} \cdot 43^{3} \cdot 1249^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$4182697396374561= 3^{3} \cdot 43^{3} \cdot 1249^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 3 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.3_43_1249.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 5 + \left(3 a + 23\right)\cdot 41 + \left(39 a + 5\right)\cdot 41^{2} + \left(24 a + 24\right)\cdot 41^{3} + \left(9 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 11 + \left(37 a + 30\right)\cdot 41 + \left(a + 37\right)\cdot 41^{2} + \left(16 a + 18\right)\cdot 41^{3} + \left(31 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 18 + \left(17 a + 28\right)\cdot 41 + \left(28 a + 1\right)\cdot 41^{2} + \left(35 a + 40\right)\cdot 41^{3} + \left(2 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 20\cdot 41 + 8\cdot 41^{2} + 3\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 34 + \left(23 a + 20\right)\cdot 41 + \left(12 a + 28\right)\cdot 41^{2} + \left(5 a + 36\right)\cdot 41^{3} + \left(38 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.