Properties

Label 6.3e3_1123e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 3^{3} \cdot 1123^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$38238692409= 3^{3} \cdot 1123^{3} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 23\cdot 37 + 26\cdot 37^{2} + 28\cdot 37^{3} + 35\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 30\cdot 37 + 20\cdot 37^{2} + 8\cdot 37^{3} + 23\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 14\cdot 37 + 24\cdot 37^{2} + 3\cdot 37^{3} + 29\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 8 + \left(3 a + 20\right)\cdot 37 + \left(5 a + 29\right)\cdot 37^{2} + \left(14 a + 27\right)\cdot 37^{3} + \left(28 a + 35\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 15 + \left(33 a + 22\right)\cdot 37 + \left(31 a + 9\right)\cdot 37^{2} + \left(22 a + 5\right)\cdot 37^{3} + \left(8 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.