Properties

Label 6.3e2_114089e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 3^{2} \cdot 114089^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$173964797962864019112865041= 3^{2} \cdot 114089^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - x^{4} + x^{3} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even
Determinant: 1.114089.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 499 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 499 }$: $ x^{2} + 493 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 40 + \left(438 a + 386\right)\cdot 499 + \left(151 a + 357\right)\cdot 499^{2} + \left(445 a + 202\right)\cdot 499^{3} + \left(269 a + 400\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 477 a + 172 + \left(60 a + 497\right)\cdot 499 + \left(347 a + 331\right)\cdot 499^{2} + \left(53 a + 227\right)\cdot 499^{3} + \left(229 a + 77\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 + 307\cdot 499 + 156\cdot 499^{2} + 237\cdot 499^{3} + 223\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 165 a + 449 + \left(240 a + 348\right)\cdot 499 + \left(343 a + 343\right)\cdot 499^{2} + \left(396 a + 347\right)\cdot 499^{3} + \left(39 a + 104\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 334 a + 441 + \left(258 a + 128\right)\cdot 499 + \left(155 a + 168\right)\cdot 499^{2} + \left(102 a + 388\right)\cdot 499^{3} + \left(459 a + 445\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 267 + 81\cdot 499 + 292\cdot 499^{2} + 471\cdot 499^{3} + 450\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 + 246\cdot 499 + 345\cdot 499^{2} + 120\cdot 499^{3} + 293\cdot 499^{4} +O\left(499^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.