Properties

Label 6.3e17.9t13.1c1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 3^{17}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$129140163= 3^{17} $
Artin number field: Splitting field of $f= x^{9} - 6 x^{6} + 12 x^{3} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 21 a + 14 + \left(40 a^{2} + 4 a + 24\right)\cdot 61 + \left(a^{2} + 53 a + 48\right)\cdot 61^{2} + \left(37 a^{2} + 43 a + 50\right)\cdot 61^{3} + \left(26 a^{2} + 29 a + 42\right)\cdot 61^{4} + \left(15 a^{2} + 27 a + 51\right)\cdot 61^{5} + \left(11 a^{2} + 12 a + 11\right)\cdot 61^{6} + \left(19 a^{2} + 31 a + 8\right)\cdot 61^{7} + \left(54 a^{2} + 12 a + 50\right)\cdot 61^{8} + \left(12 a^{2} + 17 a + 39\right)\cdot 61^{9} + \left(56 a^{2} + 55 a + 38\right)\cdot 61^{10} + \left(40 a^{2} + 44 a + 48\right)\cdot 61^{11} + \left(4 a^{2} + 20 a + 21\right)\cdot 61^{12} + \left(57 a^{2} + 30 a + 22\right)\cdot 61^{13} + \left(19 a^{2} + 27 a + 52\right)\cdot 61^{14} + \left(37 a^{2} + 44 a + 31\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 24 + 58\cdot 61 + 25\cdot 61^{2} + 3\cdot 61^{3} + 24\cdot 61^{4} + 50\cdot 61^{5} + 43\cdot 61^{6} + 10\cdot 61^{7} + 6\cdot 61^{8} + 55\cdot 61^{9} + 6\cdot 61^{10} + 13\cdot 61^{11} + 15\cdot 61^{12} + 57\cdot 61^{13} + 34\cdot 61^{14} + 60\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 58 a + 42 + \left(4 a^{2} + 57 a + 39\right)\cdot 61 + \left(7 a^{2} + 59 a + 12\right)\cdot 61^{2} + \left(31 a^{2} + 50 a + 23\right)\cdot 61^{3} + \left(23 a^{2} + 42 a + 28\right)\cdot 61^{4} + \left(60 a^{2} + 11 a + 17\right)\cdot 61^{5} + \left(23 a^{2} + 46 a + 10\right)\cdot 61^{6} + \left(6 a^{2} + 5 a + 50\right)\cdot 61^{7} + \left(33 a^{2} + 47 a + 52\right)\cdot 61^{8} + \left(14 a^{2} + 16 a + 6\right)\cdot 61^{9} + \left(37 a^{2} + 44 a + 11\right)\cdot 61^{10} + \left(34 a^{2} + 17 a + 19\right)\cdot 61^{11} + \left(21 a^{2} + 23 a + 19\right)\cdot 61^{12} + \left(15 a^{2} + 4 a + 51\right)\cdot 61^{13} + \left(21 a^{2} + 11 a + 17\right)\cdot 61^{14} + \left(46 a^{2} + 50 a + 33\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 19 a^{2} + 11 a + 48 + \left(29 a^{2} + 43 a + 14\right)\cdot 61 + \left(55 a^{2} + 35\right)\cdot 61^{2} + \left(18 a^{2} + 44 a + 47\right)\cdot 61^{3} + \left(34 a^{2} + 44 a + 17\right)\cdot 61^{4} + \left(26 a^{2} + 54 a + 22\right)\cdot 61^{5} + \left(40 a^{2} + 33 a + 46\right)\cdot 61^{6} + \left(60 a^{2} + 7 a + 18\right)\cdot 61^{7} + \left(59 a^{2} + 57 a + 56\right)\cdot 61^{8} + \left(45 a + 24\right)\cdot 61^{9} + \left(41 a^{2} + a + 8\right)\cdot 61^{10} + \left(58 a^{2} + 18 a + 50\right)\cdot 61^{11} + \left(47 a^{2} + 59 a + 40\right)\cdot 61^{12} + \left(55 a^{2} + 10 a + 36\right)\cdot 61^{13} + \left(2 a^{2} + 18 a + 13\right)\cdot 61^{14} + \left(33 a^{2} + 36 a + 32\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 30 + 59\cdot 61 + 19\cdot 61^{2} + 58\cdot 61^{3} + 13\cdot 61^{4} + 14\cdot 61^{5} + 59\cdot 61^{6} + 3\cdot 61^{7} + 56\cdot 61^{8} + 14\cdot 61^{9} + 18\cdot 61^{10} + 48\cdot 61^{11} + 47\cdot 61^{12} + 6\cdot 61^{13} + 2\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 57 a^{2} + 42 a + 22 + \left(3 a^{2} + a + 18\right)\cdot 61 + \left(36 a^{2} + 35 a + 46\right)\cdot 61^{2} + \left(23 a^{2} + 5 a + 28\right)\cdot 61^{3} + \left(40 a^{2} + 59 a + 5\right)\cdot 61^{4} + \left(57 a^{2} + 51 a + 25\right)\cdot 61^{5} + \left(35 a^{2} + 28 a + 25\right)\cdot 61^{6} + \left(26 a^{2} + 60 a + 22\right)\cdot 61^{7} + \left(48 a^{2} + 5 a + 2\right)\cdot 61^{8} + \left(29 a^{2} + 18 a + 17\right)\cdot 61^{9} + \left(33 a^{2} + 17 a + 34\right)\cdot 61^{10} + \left(7 a^{2} + 58 a + 55\right)\cdot 61^{11} + \left(14 a^{2} + 57 a + 4\right)\cdot 61^{12} + \left(50 a^{2} + 31\right)\cdot 61^{13} + \left(14 a^{2} + 23 a + 28\right)\cdot 61^{14} + \left(28 a^{2} + 6 a + 50\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 39 a^{2} + 29 a + 60 + \left(52 a^{2} + 13 a + 21\right)\cdot 61 + \left(3 a^{2} + 7 a + 38\right)\cdot 61^{2} + \left(5 a^{2} + 34 a + 23\right)\cdot 61^{3} + 47 a\cdot 61^{4} + \left(19 a^{2} + 39 a + 48\right)\cdot 61^{5} + \left(9 a^{2} + 14 a + 2\right)\cdot 61^{6} + \left(42 a^{2} + 22 a + 34\right)\cdot 61^{7} + \left(7 a^{2} + 52 a + 15\right)\cdot 61^{8} + \left(47 a^{2} + 58 a + 57\right)\cdot 61^{9} + \left(24 a^{2} + 3 a + 13\right)\cdot 61^{10} + \left(22 a^{2} + 59 a + 23\right)\cdot 61^{11} + \left(8 a^{2} + 41 a + 59\right)\cdot 61^{12} + \left(9 a^{2} + 19 a + 1\right)\cdot 61^{13} + \left(38 a^{2} + 15 a + 56\right)\cdot 61^{14} + \left(51 a^{2} + 41 a + 57\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 7 + 4\cdot 61 + 15\cdot 61^{2} + 60\cdot 61^{3} + 22\cdot 61^{4} + 57\cdot 61^{5} + 18\cdot 61^{6} + 46\cdot 61^{7} + 59\cdot 61^{8} + 51\cdot 61^{9} + 35\cdot 61^{10} + 60\cdot 61^{11} + 58\cdot 61^{12} + 57\cdot 61^{13} + 25\cdot 61^{14} + 59\cdot 61^{15} +O\left(61^{ 16 }\right)$
$r_{ 9 }$ $=$ $ 56 a^{2} + 22 a + 58 + \left(52 a^{2} + a + 2\right)\cdot 61 + \left(17 a^{2} + 27 a + 2\right)\cdot 61^{2} + \left(6 a^{2} + 4 a + 9\right)\cdot 61^{3} + \left(58 a^{2} + 20 a + 27\right)\cdot 61^{4} + \left(3 a^{2} + 58 a + 18\right)\cdot 61^{5} + \left(a^{2} + 46 a + 25\right)\cdot 61^{6} + \left(28 a^{2} + 55 a + 49\right)\cdot 61^{7} + \left(40 a^{2} + 7 a + 5\right)\cdot 61^{8} + \left(16 a^{2} + 26 a + 37\right)\cdot 61^{9} + \left(51 a^{2} + 60 a + 15\right)\cdot 61^{10} + \left(18 a^{2} + 45 a + 47\right)\cdot 61^{11} + \left(25 a^{2} + 40 a + 36\right)\cdot 61^{12} + \left(56 a^{2} + 55 a + 39\right)\cdot 61^{13} + \left(24 a^{2} + 26 a + 14\right)\cdot 61^{14} + \left(47 a^{2} + 4 a + 38\right)\cdot 61^{15} +O\left(61^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,8,5)(3,6,9)$
$(1,4,7)(2,5,8)(3,6,9)$
$(2,3)(4,7)(5,9)(6,8)$
$(1,8,3)(2,6,4)(5,9,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,9)(2,8)(3,7)(4,6)$$0$
$2$$3$$(1,4,7)(2,5,8)(3,6,9)$$-3$
$3$$3$$(1,7,4)(3,6,9)$$0$
$3$$3$$(1,4,7)(3,9,6)$$0$
$6$$3$$(1,8,3)(2,6,4)(5,9,7)$$0$
$6$$3$$(1,3,8)(2,4,6)(5,7,9)$$0$
$6$$3$$(1,3,2)(4,6,5)(7,9,8)$$0$
$9$$6$$(1,6,7,9,4,3)(2,8)$$0$
$9$$6$$(1,3,4,9,7,6)(2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.