Properties

Label 6.3e13_5e3.9t10.1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 3^{13} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$199290375= 3^{13} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 3 x^{7} + 3 x^{6} - 6 x^{5} - 12 x^{4} + 36 x^{3} - 39 x^{2} + 21 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 40\cdot 47 + 37\cdot 47^{2} + 14\cdot 47^{3} + 20\cdot 47^{4} + 34\cdot 47^{5} + 24\cdot 47^{6} + 45\cdot 47^{7} + 34\cdot 47^{8} + 16\cdot 47^{9} + 2\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 31 a^{2} + 32 a + 8 + \left(13 a^{2} + 45 a\right)\cdot 47 + \left(42 a^{2} + a + 32\right)\cdot 47^{2} + \left(9 a^{2} + 9 a + 10\right)\cdot 47^{3} + \left(18 a^{2} + 25 a + 10\right)\cdot 47^{4} + \left(5 a^{2} + a + 7\right)\cdot 47^{5} + \left(25 a^{2} + 10 a + 38\right)\cdot 47^{6} + \left(12 a^{2} + 6 a + 5\right)\cdot 47^{7} + \left(4 a^{2} + 41 a + 20\right)\cdot 47^{8} + \left(25 a^{2} + 21 a + 40\right)\cdot 47^{9} + \left(39 a^{2} + 43 a + 19\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 29 a^{2} + 34 a + 4 + \left(21 a^{2} + 12 a + 16\right)\cdot 47 + \left(46 a^{2} + 32 a + 40\right)\cdot 47^{2} + \left(21 a^{2} + 10 a + 34\right)\cdot 47^{3} + \left(30 a^{2} + 39 a + 34\right)\cdot 47^{4} + \left(34 a^{2} + 5 a + 18\right)\cdot 47^{5} + \left(a^{2} + 12 a + 38\right)\cdot 47^{6} + \left(46 a^{2} + 28 a + 25\right)\cdot 47^{7} + \left(18 a^{2} + 19 a + 2\right)\cdot 47^{8} + \left(26 a^{2} + 33 a + 43\right)\cdot 47^{9} + \left(12 a^{2} + 13 a + 12\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 38 + 36\cdot 47 + 46\cdot 47^{2} + 21\cdot 47^{3} + 45\cdot 47^{4} + 46\cdot 47^{5} + 30\cdot 47^{6} + 34\cdot 47^{7} + 11\cdot 47^{8} + 25\cdot 47^{9} + 18\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 34 a^{2} + 28 a + 14 + \left(11 a^{2} + 35 a + 43\right)\cdot 47 + \left(5 a^{2} + 12 a + 4\right)\cdot 47^{2} + \left(15 a^{2} + 27 a + 21\right)\cdot 47^{3} + \left(45 a^{2} + 29 a + 17\right)\cdot 47^{4} + \left(6 a^{2} + 39 a + 10\right)\cdot 47^{5} + \left(20 a^{2} + 24 a + 28\right)\cdot 47^{6} + \left(35 a^{2} + 12 a + 4\right)\cdot 47^{7} + \left(23 a^{2} + 33 a + 12\right)\cdot 47^{8} + \left(42 a^{2} + 38 a + 28\right)\cdot 47^{9} + \left(41 a^{2} + 36 a + 24\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 46 a^{2} + 16 a + 32 + \left(a^{2} + 18 a + 13\right)\cdot 47 + \left(40 a^{2} + 24 a + 40\right)\cdot 47^{2} + \left(36 a^{2} + 18\right)\cdot 47^{3} + \left(30 a^{2} + 15 a + 42\right)\cdot 47^{4} + \left(30 a^{2} + 24 a + 28\right)\cdot 47^{5} + \left(23 a^{2} + 29 a + 19\right)\cdot 47^{6} + \left(9 a^{2} + 13 a + 11\right)\cdot 47^{7} + \left(4 a^{2} + 9 a + 13\right)\cdot 47^{8} + \left(16 a^{2} + 39 a + 17\right)\cdot 47^{9} + \left(17 a^{2} + 23 a + 46\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 10 a + 34 + \left(7 a^{2} + 26 a + 23\right)\cdot 47 + \left(2 a^{2} + 39 a + 11\right)\cdot 47^{2} + \left(13 a^{2} + 16 a + 18\right)\cdot 47^{3} + \left(39 a^{2} + 33 a + 12\right)\cdot 47^{4} + \left(28 a^{2} + 31 a + 25\right)\cdot 47^{5} + \left(32 a^{2} + 20 a + 37\right)\cdot 47^{6} + \left(28 a^{2} + 19 a + 2\right)\cdot 47^{7} + \left(18 a^{2} + 32 a + 42\right)\cdot 47^{8} + \left(18 a^{2} + 20 a + 21\right)\cdot 47^{9} + \left(37 a^{2} + 39\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 20 + 22\cdot 47 + 4\cdot 47^{2} + 14\cdot 47^{3} + 23\cdot 47^{4} + 26\cdot 47^{5} + 16\cdot 47^{6} + 45\cdot 47^{8} + 31\cdot 47^{9} + 27\cdot 47^{10} +O\left(47^{ 11 }\right)$
$r_{ 9 }$ $=$ $ a^{2} + 21 a + 36 + \left(38 a^{2} + 2 a + 38\right)\cdot 47 + \left(4 a^{2} + 30 a + 16\right)\cdot 47^{2} + \left(44 a^{2} + 29 a + 33\right)\cdot 47^{3} + \left(23 a^{2} + 45 a + 28\right)\cdot 47^{4} + \left(34 a^{2} + 37 a + 36\right)\cdot 47^{5} + \left(37 a^{2} + 43 a\right)\cdot 47^{6} + \left(8 a^{2} + 13 a + 10\right)\cdot 47^{7} + \left(24 a^{2} + 5 a + 6\right)\cdot 47^{8} + \left(12 a^{2} + 34 a + 10\right)\cdot 47^{9} + \left(39 a^{2} + 22 a + 43\right)\cdot 47^{10} +O\left(47^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,7,8,3,9,4,5,6)$
$(1,8,4)(6,9,7)$
$(1,8,4)(2,3,5)(6,7,9)$
$(1,6)(2,5)(4,7)(8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,6)(2,5)(4,7)(8,9)$ $0$
$2$ $3$ $(1,8,4)(2,3,5)(6,7,9)$ $-3$
$3$ $3$ $(2,3,5)(6,9,7)$ $0$
$3$ $3$ $(2,5,3)(6,7,9)$ $0$
$9$ $6$ $(1,8)(2,9,3,7,5,6)$ $0$
$9$ $6$ $(1,8)(2,6,5,7,3,9)$ $0$
$6$ $9$ $(1,2,7,8,3,9,4,5,6)$ $0$
$6$ $9$ $(1,2,6,8,3,7,4,5,9)$ $0$
$6$ $9$ $(1,6,3,4,9,2,8,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.