Properties

Label 6.3e12_59e3.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 3^{12} \cdot 59^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$109146821139= 3^{12} \cdot 59^{3} $
Artin number field: Splitting field of $f= x^{9} - 8 x^{6} + 18 x^{5} - 45 x^{4} + 20 x^{3} + 9 x^{2} + 93 x - 92 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 139 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 139 }$: $ x^{3} + 6 x + 137 $
Roots:
$r_{ 1 }$ $=$ $ 23 + 26\cdot 139 + 133\cdot 139^{2} + 97\cdot 139^{3} + 4\cdot 139^{4} + 74\cdot 139^{5} + 62\cdot 139^{6} + 139^{7} + 9\cdot 139^{8} + 29\cdot 139^{9} + 72\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 52 + 9\cdot 139 + 123\cdot 139^{2} + 85\cdot 139^{3} + 42\cdot 139^{4} + 63\cdot 139^{5} + 3\cdot 139^{6} + 77\cdot 139^{7} + 138\cdot 139^{8} + 66\cdot 139^{9} + 29\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 64 + 103\cdot 139 + 21\cdot 139^{2} + 94\cdot 139^{3} + 91\cdot 139^{4} + 139^{5} + 73\cdot 139^{6} + 60\cdot 139^{7} + 130\cdot 139^{8} + 42\cdot 139^{9} + 37\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 53 a^{2} + 62 a + 73 + \left(59 a^{2} + 73 a + 98\right)\cdot 139 + \left(114 a^{2} + 132 a + 40\right)\cdot 139^{2} + \left(47 a^{2} + 53 a + 52\right)\cdot 139^{3} + \left(26 a^{2} + 66 a + 105\right)\cdot 139^{4} + \left(72 a^{2} + 4 a + 10\right)\cdot 139^{5} + \left(17 a^{2} + 90 a + 70\right)\cdot 139^{6} + \left(105 a^{2} + 37 a + 3\right)\cdot 139^{7} + \left(130 a^{2} + 23 a + 106\right)\cdot 139^{8} + \left(25 a^{2} + 90 a + 103\right)\cdot 139^{9} + \left(95 a^{2} + 27 a + 102\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 62 a^{2} + 109 a + 109 + \left(104 a^{2} + 86 a\right)\cdot 139 + \left(42 a^{2} + 32 a + 32\right)\cdot 139^{2} + \left(89 a^{2} + 4 a + 79\right)\cdot 139^{3} + \left(133 a^{2} + 60 a + 117\right)\cdot 139^{4} + \left(20 a^{2} + 37 a + 83\right)\cdot 139^{5} + \left(a^{2} + 61 a + 4\right)\cdot 139^{6} + \left(50 a^{2} + 128 a + 61\right)\cdot 139^{7} + \left(34 a^{2} + 13 a + 137\right)\cdot 139^{8} + \left(11 a^{2} + 104 a + 44\right)\cdot 139^{9} + \left(83 a^{2} + 7 a + 54\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 94 a^{2} + 138 a + 98 + \left(31 a^{2} + 49 a + 126\right)\cdot 139 + \left(137 a^{2} + 69 a + 131\right)\cdot 139^{2} + \left(28 a^{2} + 125 a + 115\right)\cdot 139^{3} + \left(74 a^{2} + 136 a + 18\right)\cdot 139^{4} + \left(68 a^{2} + 37 a + 135\right)\cdot 139^{5} + \left(11 a^{2} + 68 a + 45\right)\cdot 139^{6} + \left(130 a^{2} + 45 a + 103\right)\cdot 139^{7} + \left(49 a^{2} + 87 a + 60\right)\cdot 139^{8} + \left(130 a^{2} + 125 a + 104\right)\cdot 139^{9} + \left(100 a^{2} + 84 a + 125\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 99 a^{2} + 5 a + 118 + \left(77 a^{2} + 4 a + 32\right)\cdot 139 + \left(76 a^{2} + 121 a + 28\right)\cdot 139^{2} + \left(29 a^{2} + 68 a + 118\right)\cdot 139^{3} + \left(70 a^{2} + 134 a + 2\right)\cdot 139^{4} + \left(16 a^{2} + 29 a + 66\right)\cdot 139^{5} + \left(137 a^{2} + 136 a + 131\right)\cdot 139^{6} + \left(105 a^{2} + 66 a + 6\right)\cdot 139^{7} + \left(42 a^{2} + 38 a + 32\right)\cdot 139^{8} + \left(131 a^{2} + 117 a + 108\right)\cdot 139^{9} + \left(65 a^{2} + 53 a + 124\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 122 a^{2} + 31 a + 71 + \left(2 a^{2} + 2 a + 11\right)\cdot 139 + \left(98 a^{2} + 37 a + 114\right)\cdot 139^{2} + \left(20 a^{2} + 9 a + 82\right)\cdot 139^{3} + \left(70 a^{2} + 81 a + 2\right)\cdot 139^{4} + \left(49 a^{2} + 63 a + 59\right)\cdot 139^{5} + \left(126 a^{2} + 9 a + 88\right)\cdot 139^{6} + \left(97 a^{2} + 104 a + 113\right)\cdot 139^{7} + \left(54 a^{2} + 37 a + 79\right)\cdot 139^{8} + \left(136 a^{2} + 48 a + 128\right)\cdot 139^{9} + \left(93 a^{2} + 46 a + 97\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 126 a^{2} + 72 a + 87 + \left(a^{2} + 61 a + 7\right)\cdot 139 + \left(87 a^{2} + 24 a + 70\right)\cdot 139^{2} + \left(61 a^{2} + 16 a + 107\right)\cdot 139^{3} + \left(42 a^{2} + 77 a + 30\right)\cdot 139^{4} + \left(50 a^{2} + 104 a + 62\right)\cdot 139^{5} + \left(123 a^{2} + 51 a + 76\right)\cdot 139^{6} + \left(66 a^{2} + 34 a + 128\right)\cdot 139^{7} + \left(104 a^{2} + 77 a\right)\cdot 139^{8} + \left(120 a^{2} + 70 a + 66\right)\cdot 139^{9} + \left(116 a^{2} + 57 a + 50\right)\cdot 139^{10} +O\left(139^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,7,9)(5,8,6)$
$(1,9)(2,4)(3,7)(5,6)$
$(1,2,3)(4,7,9)$
$(1,4,5)(2,9,6)(3,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,9)(2,4)(3,7)(5,6)$ $0$
$2$ $3$ $(1,3,2)(4,7,9)(5,8,6)$ $-3$
$3$ $3$ $(1,2,3)(5,8,6)$ $0$
$3$ $3$ $(1,3,2)(5,6,8)$ $0$
$6$ $3$ $(1,4,5)(2,9,6)(3,7,8)$ $0$
$6$ $3$ $(1,7,8)(2,4,5)(3,9,6)$ $0$
$6$ $3$ $(1,8,7)(2,5,4)(3,6,9)$ $0$
$9$ $6$ $(1,6,2,5,3,8)(7,9)$ $0$
$9$ $6$ $(1,8,3,5,2,6)(7,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.