Properties

Label 6.3e11_29e3.9t13.1c1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 3^{11} \cdot 29^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$4320438183= 3^{11} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{9} - 9 x^{7} - x^{6} + 27 x^{5} + 6 x^{4} - 36 x^{3} - 9 x^{2} + 27 x - 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd
Determinant: 1.3_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 38 a^{2} + 28 a + 39 + \left(26 a^{2} + 2 a + 17\right)\cdot 41 + \left(16 a^{2} + 17 a + 38\right)\cdot 41^{2} + \left(9 a^{2} + 2 a + 19\right)\cdot 41^{3} + \left(17 a^{2} + 36 a + 11\right)\cdot 41^{4} + \left(24 a^{2} + 31 a + 16\right)\cdot 41^{5} + \left(35 a^{2} + 24 a + 37\right)\cdot 41^{6} + \left(24 a^{2} + 10 a + 2\right)\cdot 41^{7} + \left(10 a^{2} + 16 a + 7\right)\cdot 41^{8} + \left(33 a^{2} + 19 a + 22\right)\cdot 41^{9} + \left(40 a^{2} + 31 a + 13\right)\cdot 41^{10} + \left(3 a^{2} + 18 a + 16\right)\cdot 41^{11} + \left(a^{2} + 23 a + 14\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 11 + 29\cdot 41 + 37\cdot 41^{2} + 12\cdot 41^{3} + 12\cdot 41^{5} + 37\cdot 41^{6} + 39\cdot 41^{7} + 7\cdot 41^{8} + 8\cdot 41^{9} + 20\cdot 41^{10} + 5\cdot 41^{11} + 16\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 10 + 28\cdot 41 + 18\cdot 41^{2} + 32\cdot 41^{3} + 3\cdot 41^{4} + 38\cdot 41^{5} + 41^{6} + 15\cdot 41^{7} + 3\cdot 41^{8} + 6\cdot 41^{9} + 28\cdot 41^{10} + 30\cdot 41^{11} + 5\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 16 a^{2} + 19 a + 38 + \left(25 a^{2} + 8 a + 16\right)\cdot 41 + \left(24 a^{2} + 4 a + 16\right)\cdot 41^{2} + \left(21 a^{2} + 28 a + 14\right)\cdot 41^{3} + \left(17 a^{2} + 9 a + 25\right)\cdot 41^{4} + \left(40 a^{2} + 20 a + 40\right)\cdot 41^{5} + \left(24 a^{2} + 25 a + 2\right)\cdot 41^{6} + \left(28 a^{2} + 7 a + 19\right)\cdot 41^{7} + \left(27 a^{2} + 12 a + 18\right)\cdot 41^{8} + \left(26 a^{2} + 22 a + 31\right)\cdot 41^{9} + \left(17 a^{2} + 31 a + 11\right)\cdot 41^{10} + \left(10 a^{2} + 17 a + 34\right)\cdot 41^{11} + \left(20 a^{2} + 2 a + 40\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 35 a + 5 + \left(29 a^{2} + 29 a + 6\right)\cdot 41 + \left(40 a^{2} + 19 a + 27\right)\cdot 41^{2} + \left(9 a^{2} + 10 a + 6\right)\cdot 41^{3} + \left(6 a^{2} + 36 a + 4\right)\cdot 41^{4} + \left(17 a^{2} + 29 a + 25\right)\cdot 41^{5} + \left(21 a^{2} + 31 a\right)\cdot 41^{6} + \left(28 a^{2} + 22 a + 19\right)\cdot 41^{7} + \left(2 a^{2} + 12 a + 15\right)\cdot 41^{8} + \left(22 a^{2} + 40 a + 28\right)\cdot 41^{9} + \left(23 a^{2} + 18 a + 15\right)\cdot 41^{10} + \left(26 a^{2} + 4 a + 31\right)\cdot 41^{11} + \left(19 a^{2} + 15 a + 26\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{2} + 2 + \left(7 a^{2} + 21 a + 32\right)\cdot 41 + \left(6 a^{2} + 13 a + 17\right)\cdot 41^{2} + \left(32 a^{2} + 35 a + 21\right)\cdot 41^{3} + \left(23 a^{2} + 35 a + 29\right)\cdot 41^{4} + \left(10 a^{2} + 34 a + 20\right)\cdot 41^{5} + \left(22 a^{2} + 9 a + 28\right)\cdot 41^{6} + \left(22 a^{2} + 23 a + 28\right)\cdot 41^{7} + \left(3 a^{2} + 39 a + 29\right)\cdot 41^{8} + \left(16 a^{2} + 5 a + 10\right)\cdot 41^{9} + \left(11 a^{2} + 7 a + 21\right)\cdot 41^{10} + \left(32 a^{2} + 8 a + 21\right)\cdot 41^{11} + \left(4 a^{2} + a + 30\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 20 + 24\cdot 41 + 25\cdot 41^{2} + 36\cdot 41^{3} + 36\cdot 41^{4} + 31\cdot 41^{5} + 41^{6} + 27\cdot 41^{7} + 29\cdot 41^{8} + 26\cdot 41^{9} + 33\cdot 41^{10} + 4\cdot 41^{11} + 19\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 13 a^{2} + 23 a + 36 + \left(17 a^{2} + 20 a + 38\right)\cdot 41 + \left(8 a^{2} + a + 32\right)\cdot 41^{2} + \left(4 a^{2} + 22 a + 2\right)\cdot 41^{3} + \left(a^{2} + 19 a + 28\right)\cdot 41^{4} + \left(15 a^{2} + 2 a + 23\right)\cdot 41^{5} + \left(23 a^{2} + 2 a + 15\right)\cdot 41^{6} + \left(31 a^{2} + 31 a + 7\right)\cdot 41^{7} + \left(30 a^{2} + 31 a + 34\right)\cdot 41^{8} + \left(27 a^{2} + 10 a + 4\right)\cdot 41^{9} + \left(24 a^{2} + 10 a + 30\right)\cdot 41^{10} + \left(30 a^{2} + 4 a + 6\right)\cdot 41^{11} + \left(18 a^{2} + 10 a + 26\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 25 a^{2} + 18 a + 3 + \left(16 a^{2} + 40 a + 11\right)\cdot 41 + \left(26 a^{2} + 25 a + 31\right)\cdot 41^{2} + \left(4 a^{2} + 24 a + 16\right)\cdot 41^{3} + \left(16 a^{2} + 26 a + 24\right)\cdot 41^{4} + \left(15 a^{2} + 3 a + 37\right)\cdot 41^{5} + \left(36 a^{2} + 29 a + 37\right)\cdot 41^{6} + \left(27 a^{2} + 27 a + 4\right)\cdot 41^{7} + \left(6 a^{2} + 10 a + 18\right)\cdot 41^{8} + \left(38 a^{2} + 24 a + 25\right)\cdot 41^{9} + \left(4 a^{2} + 23 a + 30\right)\cdot 41^{10} + \left(19 a^{2} + 28 a + 12\right)\cdot 41^{11} + \left(17 a^{2} + 29 a + 25\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,6)(3,9,4)(5,7,8)$
$(1,5,4)(2,7,3)(6,8,9)$
$(2,9)(3,6)(4,5)(7,8)$
$(2,7,3)(6,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,8)(2,3)(4,9)(5,6)$$0$
$2$$3$$(1,5,4)(2,7,3)(6,8,9)$$-3$
$3$$3$$(1,5,4)(6,9,8)$$0$
$3$$3$$(1,4,5)(6,8,9)$$0$
$6$$3$$(1,2,6)(3,9,4)(5,7,8)$$0$
$6$$3$$(1,6,2)(3,4,9)(5,8,7)$$0$
$6$$3$$(1,3,6)(2,8,5)(4,7,9)$$0$
$9$$6$$(1,9,5,8,4,6)(2,3)$$0$
$9$$6$$(1,6,4,8,5,9)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.