Properties

Label 6.3_31_470149.7t7.1
Dimension 6
Group $S_7$
Conductor $ 3 \cdot 31 \cdot 470149 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$43723857= 3 \cdot 31 \cdot 470149 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 7 x^{4} + 12 x^{3} - 10 x^{2} - 6 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 107 + 128\cdot 137 + 60\cdot 137^{2} + 58\cdot 137^{3} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 126 a + 18 + \left(29 a + 91\right)\cdot 137 + \left(71 a + 89\right)\cdot 137^{2} + \left(88 a + 46\right)\cdot 137^{3} + \left(42 a + 28\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 31\cdot 137 + 13\cdot 137^{2} + 41\cdot 137^{3} + 57\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 85\cdot 137 + 119\cdot 137^{2} + 63\cdot 137^{3} + 14\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 69\cdot 137 + 99\cdot 137^{2} + 81\cdot 137^{3} + 93\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 86 + 134\cdot 137 + 88\cdot 137^{2} + 23\cdot 137^{3} + 21\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 89 + \left(107 a + 7\right)\cdot 137 + \left(65 a + 76\right)\cdot 137^{2} + \left(48 a + 95\right)\cdot 137^{3} + \left(94 a + 58\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.