Properties

Label 6.3998639e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 3998639^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1022259105082147196232023128537199= 3998639^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 5 x^{4} - 6 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd
Determinant: 1.3998639.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 21 + \left(69 a + 21\right)\cdot 73 + \left(56 a + 44\right)\cdot 73^{2} + \left(45 a + 62\right)\cdot 73^{3} + \left(39 a + 22\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 23 + \left(52 a + 40\right)\cdot 73 + \left(70 a + 72\right)\cdot 73^{2} + \left(17 a + 31\right)\cdot 73^{3} + \left(6 a + 65\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 5\cdot 73 + 72\cdot 73^{2} + 50\cdot 73^{3} + 57\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 13\cdot 73 + 47\cdot 73^{2} + 4\cdot 73^{3} + 17\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 71 + 61\cdot 73 + 42\cdot 73^{2} + 56\cdot 73^{3} + 39\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 52 + \left(20 a + 17\right)\cdot 73 + \left(2 a + 13\right)\cdot 73^{2} + \left(55 a + 15\right)\cdot 73^{3} + \left(66 a + 66\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 49 a + 20 + \left(3 a + 59\right)\cdot 73 + \left(16 a + 72\right)\cdot 73^{2} + \left(27 a + 69\right)\cdot 73^{3} + \left(33 a + 22\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.