Properties

Label 6.397e5_153997e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 397^{5} \cdot 153997^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$854110058052620128333358558994322383049= 397^{5} \cdot 153997^{5} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - 2 x^{4} + 12 x^{3} + 5 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 14 + \left(73 a + 105\right)\cdot 109 + \left(2 a + 81\right)\cdot 109^{2} + \left(74 a + 49\right)\cdot 109^{3} + \left(58 a + 57\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 105 a + 45 + \left(23 a + 48\right)\cdot 109 + \left(2 a + 64\right)\cdot 109^{2} + \left(85 a + 18\right)\cdot 109^{3} + \left(54 a + 19\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 41 + \left(85 a + 76\right)\cdot 109 + \left(106 a + 42\right)\cdot 109^{2} + \left(23 a + 101\right)\cdot 109^{3} + \left(54 a + 97\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 100 + 13\cdot 109 + 8\cdot 109^{2} + 36\cdot 109^{3} + 16\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 94 a + 35 + \left(48 a + 58\right)\cdot 109 + \left(44 a + 61\right)\cdot 109^{2} + \left(101 a + 80\right)\cdot 109^{3} + \left(32 a + 26\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 72 + \left(35 a + 11\right)\cdot 109 + \left(106 a + 11\right)\cdot 109^{2} + \left(34 a + 12\right)\cdot 109^{3} + \left(50 a + 42\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 15 a + 20 + \left(60 a + 13\right)\cdot 109 + \left(64 a + 57\right)\cdot 109^{2} + \left(7 a + 28\right)\cdot 109^{3} + \left(76 a + 67\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.