Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 a + 2 + \left(10 a + 6\right)\cdot 11 + \left(2 a^{2} + 3 a + 10\right)\cdot 11^{2} + \left(3 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(6 a^{2} + 5 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a^{2} + 8 a + 2 + \left(5 a^{2} + 9 a + 9\right)\cdot 11 + \left(a^{2} + 6 a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 5 a + 2\right)\cdot 11^{3} + \left(6 a^{2} + 4 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 a^{2} + 7 a + 3 + \left(5 a^{2} + 10 a + 10\right)\cdot 11 + \left(10 a^{2} + 6 a + 10\right)\cdot 11^{2} + \left(a^{2} + 3 a\right)\cdot 11^{3} + \left(8 a^{2} + 9 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 a^{2} + a + 6 + \left(6 a^{2} + 9 a + 3\right)\cdot 11 + \left(2 a^{2} + 3 a + 6\right)\cdot 11^{2} + 4 a\cdot 11^{3} + \left(5 a^{2} + 9 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 2 a^{2} + 2 a + 1 + \left(5 a^{2} + a + 2\right)\cdot 11 + \left(9 a^{2} + 2\right)\cdot 11^{2} + \left(5 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 6 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 4 a^{2} + 2 a + 1 + \left(10 a^{2} + 3 a + 5\right)\cdot 11 + \left(6 a^{2} + 8\right)\cdot 11^{2} + \left(3 a^{2} + a + 8\right)\cdot 11^{3} + \left(10 a^{2} + 8 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 7 + 7\cdot 11 + 4\cdot 11^{3} + 5\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(2,4)(3,5)$ |
| $(1,4)(2,5,7,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $21$ | $2$ | $(2,7)(5,6)$ | $2$ |
| $56$ | $3$ | $(1,5,6)(2,3,7)$ | $0$ |
| $42$ | $4$ | $(1,4)(2,5,7,6)$ | $0$ |
| $24$ | $7$ | $(1,2,3,5,7,6,4)$ | $-1$ |
| $24$ | $7$ | $(1,5,4,3,6,2,7)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.