Properties

Label 6.34554953.7t7.1
Dimension 6
Group $S_7$
Conductor $ 34554953 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$34554953 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 5 x^{3} - 8 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 118 + \left(126 a + 96\right)\cdot 131 + \left(26 a + 16\right)\cdot 131^{2} + \left(105 a + 12\right)\cdot 131^{3} + \left(80 a + 91\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 128 a + 1 + \left(81 a + 67\right)\cdot 131 + \left(29 a + 53\right)\cdot 131^{2} + \left(79 a + 52\right)\cdot 131^{3} + \left(36 a + 13\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 61\cdot 131 + 59\cdot 131^{2} + 108\cdot 131^{3} + 91\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 120 + \left(49 a + 4\right)\cdot 131 + \left(101 a + 90\right)\cdot 131^{2} + \left(51 a + 77\right)\cdot 131^{3} + \left(94 a + 80\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 118 a + 39 + \left(4 a + 64\right)\cdot 131 + \left(104 a + 129\right)\cdot 131^{2} + \left(25 a + 12\right)\cdot 131^{3} + \left(50 a + 47\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 112 + 92\cdot 131 + 48\cdot 131^{2} + 114\cdot 131^{3} + 27\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 126 + 5\cdot 131 + 126\cdot 131^{2} + 14\cdot 131^{3} + 41\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.