Properties

Label 6.33792250337.20t30.b
Dimension $6$
Group $\PGL(2,5)$
Conductor $33792250337$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:\(33792250337\)\(\medspace = 53^{3} \cdot 61^{3}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.33792250337.1
Galois orbit size: $1$
Smallest permutation container: 20T30
Parity: even
Projective image: $S_5$
Projective field: 6.2.33792250337.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \(x^{2} + 12 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 13 + 8\cdot 13^{2} + 10\cdot 13^{3} + 12\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 12 + \left(6 a + 8\right)\cdot 13 + \left(3 a + 6\right)\cdot 13^{2} + \left(12 a + 3\right)\cdot 13^{3} + \left(7 a + 4\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 2\cdot 13 + 8\cdot 13^{2} + 12\cdot 13^{3} + 9\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + 6 + \left(3 a + 10\right)\cdot 13 + \left(7 a + 10\right)\cdot 13^{2} + \left(2 a + 8\right)\cdot 13^{3} + \left(4 a + 11\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 8 a + 4 + \left(6 a + 10\right)\cdot 13 + \left(9 a + 3\right)\cdot 13^{2} + 12\cdot 13^{3} + \left(5 a + 12\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 5 a + 1 + \left(9 a + 6\right)\cdot 13 + \left(5 a + 1\right)\cdot 13^{2} + \left(10 a + 4\right)\cdot 13^{3} + 8 a\cdot 13^{4} +O(13^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,4,6,2,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,3)(2,4)(5,6)$ $0$
$15$ $2$ $(1,3)(4,6)$ $-2$
$20$ $3$ $(1,6,5)(2,3,4)$ $0$
$30$ $4$ $(1,4,3,6)$ $0$
$24$ $5$ $(1,5,4,6,2)$ $1$
$20$ $6$ $(1,4,6,2,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.