Properties

Label 6.31e5_67e5_349e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 31^{5} \cdot 67^{5} \cdot 349^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$200128812064653036097535255593= 31^{5} \cdot 67^{5} \cdot 349^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{4} - 2 x^{3} + x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 71 + \left(35 a + 53\right)\cdot 109 + \left(46 a + 74\right)\cdot 109^{2} + \left(54 a + 75\right)\cdot 109^{3} + \left(67 a + 81\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 57 + \left(58 a + 81\right)\cdot 109 + \left(48 a + 17\right)\cdot 109^{2} + \left(81 a + 68\right)\cdot 109^{3} + \left(85 a + 99\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 + 86\cdot 109 + 42\cdot 109^{2} + 93\cdot 109^{3} + 105\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 102 a + 78 + \left(73 a + 81\right)\cdot 109 + \left(62 a + 85\right)\cdot 109^{2} + \left(54 a + 83\right)\cdot 109^{3} + \left(41 a + 94\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 39 + \left(79 a + 39\right)\cdot 109 + \left(44 a + 66\right)\cdot 109^{2} + \left(44 a + 61\right)\cdot 109^{3} + \left(70 a + 16\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 a + 84 + \left(29 a + 73\right)\cdot 109 + \left(64 a + 31\right)\cdot 109^{2} + \left(64 a + 61\right)\cdot 109^{3} + \left(38 a + 42\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 98 a + 68 + \left(50 a + 19\right)\cdot 109 + \left(60 a + 8\right)\cdot 109^{2} + \left(27 a + 101\right)\cdot 109^{3} + \left(23 a + 103\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.