Properties

Label 6.31e5.9t10.1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 31^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$28629151= 31^{5} $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 2 x^{6} + 3 x^{5} + x^{4} + 2 x^{3} - x^{2} + x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{3} + 6 x + 65 $
Roots:
$r_{ 1 }$ $=$ $ 34 a^{2} + 4 a + 51 + \left(61 a^{2} + 65 a + 20\right)\cdot 67 + \left(13 a^{2} + 58 a + 42\right)\cdot 67^{2} + \left(46 a^{2} + 55 a + 38\right)\cdot 67^{3} + \left(27 a^{2} + 4 a + 60\right)\cdot 67^{4} + \left(53 a^{2} + 2 a + 15\right)\cdot 67^{5} + \left(53 a^{2} + a + 48\right)\cdot 67^{6} + \left(33 a^{2} + 34\right)\cdot 67^{7} + \left(5 a^{2} + 11 a + 42\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 7 + 45\cdot 67 + 2\cdot 67^{2} + 13\cdot 67^{3} + 19\cdot 67^{4} + 35\cdot 67^{5} + 57\cdot 67^{6} + 8\cdot 67^{7} + 7\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 23 + 36\cdot 67 + 2\cdot 67^{2} + 3\cdot 67^{3} + 45\cdot 67^{4} + 42\cdot 67^{5} + 19\cdot 67^{6} + 6\cdot 67^{7} + 3\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 51 a^{2} + 50 a + \left(16 a^{2} + 44 a + 38\right)\cdot 67 + \left(66 a^{2} + 45 a + 64\right)\cdot 67^{2} + \left(19 a^{2} + 11 a + 19\right)\cdot 67^{3} + \left(a^{2} + 17 a + 12\right)\cdot 67^{4} + \left(48 a^{2} + 40 a + 3\right)\cdot 67^{5} + \left(21 a^{2} + 36 a + 59\right)\cdot 67^{6} + \left(47 a^{2} + 28 a + 34\right)\cdot 67^{7} + \left(36 a^{2} + 65 a + 56\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 32 a^{2} + 16 a + 58 + \left(33 a^{2} + 42 a + 37\right)\cdot 67 + \left(14 a^{2} + 30 a + 58\right)\cdot 67^{2} + \left(62 a^{2} + 61 a + 54\right)\cdot 67^{3} + \left(65 a^{2} + 10 a + 2\right)\cdot 67^{4} + \left(30 a^{2} + 5 a + 2\right)\cdot 67^{5} + \left(37 a^{2} + 7 a + 55\right)\cdot 67^{6} + \left(2 a^{2} + 26 a + 56\right)\cdot 67^{7} + \left(50 a^{2} + 8 a + 42\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 33 + 11\cdot 67 + 33\cdot 67^{2} + 66\cdot 67^{3} + 64\cdot 67^{4} + 9\cdot 67^{5} + 38\cdot 67^{6} + 12\cdot 67^{7} + 65\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 51 a^{2} + a + \left(16 a^{2} + 47 a + 38\right)\cdot 67 + \left(53 a^{2} + 57 a + 12\right)\cdot 67^{2} + \left(51 a^{2} + 60 a + 13\right)\cdot 67^{3} + \left(66 a^{2} + 38 a + 6\right)\cdot 67^{4} + \left(54 a^{2} + 21 a + 31\right)\cdot 67^{5} + \left(7 a^{2} + 23 a + 3\right)\cdot 67^{6} + \left(17 a^{2} + 12 a + 48\right)\cdot 67^{7} + \left(47 a^{2} + 60 a + 31\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 60 a^{2} + 6 a + 21 + \left(14 a^{2} + 50 a + 35\right)\cdot 67 + \left(55 a^{2} + 26 a + 6\right)\cdot 67^{2} + \left(23 a^{2} + 17 a + 16\right)\cdot 67^{3} + \left(52 a^{2} + 30 a + 25\right)\cdot 67^{4} + \left(25 a^{2} + 3 a + 39\right)\cdot 67^{5} + \left(17 a^{2} + 33 a + 36\right)\cdot 67^{6} + \left(40 a^{2} + 44 a + 60\right)\cdot 67^{7} + \left(63 a^{2} + 23 a + 6\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 40 a^{2} + 57 a + 8 + \left(57 a^{2} + 18 a + 5\right)\cdot 67 + \left(64 a^{2} + 48 a + 45\right)\cdot 67^{2} + \left(63 a^{2} + 60 a + 42\right)\cdot 67^{3} + \left(53 a^{2} + 31 a + 31\right)\cdot 67^{4} + \left(54 a^{2} + 61 a + 21\right)\cdot 67^{5} + \left(62 a^{2} + 32 a + 17\right)\cdot 67^{6} + \left(59 a^{2} + 22 a + 5\right)\cdot 67^{7} + \left(64 a^{2} + 32 a + 12\right)\cdot 67^{8} +O\left(67^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6,3)(4,5,7)$
$(2,5)(3,4)(6,7)(8,9)$
$(1,2,4,9,6,7,8,3,5)$
$(1,8,9)(4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,5)(3,4)(6,7)(8,9)$ $0$
$2$ $3$ $(1,9,8)(2,6,3)(4,7,5)$ $-3$
$3$ $3$ $(1,8,9)(4,7,5)$ $0$
$3$ $3$ $(1,9,8)(4,5,7)$ $0$
$9$ $6$ $(1,8)(2,4,3,7,6,5)$ $0$
$9$ $6$ $(1,8)(2,5,6,7,3,4)$ $0$
$6$ $9$ $(1,2,4,9,6,7,8,3,5)$ $0$
$6$ $9$ $(1,6,4,9,3,7,8,2,5)$ $0$
$6$ $9$ $(1,4,3,8,5,6,9,7,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.