Properties

Label 6.31e3_67e4.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 31^{3} \cdot 67^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$600322045711= 31^{3} \cdot 67^{4} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 2 x^{7} - 16 x^{6} + 23 x^{5} + 134 x^{4} - 847 x^{3} + 2132 x^{2} - 2948 x + 3064 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 19 a^{2} + 17 a + 37 + \left(18 a^{2} + 38 a + 27\right)\cdot 47 + \left(21 a^{2} + 43 a + 44\right)\cdot 47^{2} + \left(12 a^{2} + 22 a + 5\right)\cdot 47^{3} + \left(33 a + 38\right)\cdot 47^{4} + \left(5 a^{2} + 36 a + 23\right)\cdot 47^{5} + \left(29 a^{2} + 27 a + 7\right)\cdot 47^{6} + \left(a^{2} + a + 30\right)\cdot 47^{7} + \left(31 a^{2} + 19 a + 37\right)\cdot 47^{8} + \left(7 a^{2} + 33 a + 37\right)\cdot 47^{9} + \left(30 a^{2} + 27 a + 21\right)\cdot 47^{10} + \left(23 a^{2} + 43\right)\cdot 47^{11} + \left(13 a^{2} + 46\right)\cdot 47^{12} + \left(34 a^{2} + 44 a + 15\right)\cdot 47^{13} + \left(26 a^{2} + 26 a\right)\cdot 47^{14} + \left(33 a^{2} + 16 a + 39\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 23 a^{2} + 5 a + 10 + \left(21 a^{2} + 21 a + 6\right)\cdot 47 + \left(19 a^{2} + 33 a + 31\right)\cdot 47^{2} + \left(5 a^{2} + 34\right)\cdot 47^{3} + \left(19 a^{2} + 46 a + 2\right)\cdot 47^{4} + \left(15 a^{2} + 39 a + 22\right)\cdot 47^{5} + \left(46 a^{2} + 31 a + 19\right)\cdot 47^{6} + \left(19 a^{2} + 2 a + 5\right)\cdot 47^{7} + \left(19 a^{2} + 44 a + 12\right)\cdot 47^{8} + \left(18 a^{2} + 20 a + 13\right)\cdot 47^{9} + \left(3 a^{2} + 2 a + 20\right)\cdot 47^{10} + \left(25 a^{2} + 42 a + 6\right)\cdot 47^{11} + \left(42 a^{2} + 6 a + 10\right)\cdot 47^{12} + \left(12 a^{2} + 3 a + 31\right)\cdot 47^{13} + \left(44 a^{2} + 40 a\right)\cdot 47^{14} + \left(22 a^{2} + 45 a + 24\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 30 a + 19 + \left(44 a^{2} + 13 a + 32\right)\cdot 47 + \left(2 a^{2} + 6 a + 7\right)\cdot 47^{2} + \left(42 a^{2} + 9 a + 18\right)\cdot 47^{3} + \left(28 a^{2} + 1\right)\cdot 47^{4} + \left(13 a^{2} + 14 a + 41\right)\cdot 47^{5} + \left(6 a^{2} + 8\right)\cdot 47^{6} + \left(16 a^{2} + 11 a + 12\right)\cdot 47^{7} + \left(35 a^{2} + 27 a + 46\right)\cdot 47^{8} + \left(31 a^{2} + a + 38\right)\cdot 47^{9} + \left(21 a + 9\right)\cdot 47^{10} + \left(3 a^{2} + 21 a + 2\right)\cdot 47^{11} + \left(39 a^{2} + 25 a + 4\right)\cdot 47^{12} + \left(38 a^{2} + 39 a + 25\right)\cdot 47^{13} + \left(38 a^{2} + 41 a + 24\right)\cdot 47^{14} + \left(6 a^{2} + 20 a + 32\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 18 a^{2} + 35 + \left(31 a^{2} + 42 a + 6\right)\cdot 47 + \left(22 a^{2} + 43 a\right)\cdot 47^{2} + \left(39 a^{2} + 14 a + 13\right)\cdot 47^{3} + \left(17 a^{2} + 13 a + 26\right)\cdot 47^{4} + \left(28 a^{2} + 43 a + 23\right)\cdot 47^{5} + \left(11 a^{2} + 18 a + 19\right)\cdot 47^{6} + \left(29 a^{2} + 34 a + 38\right)\cdot 47^{7} + \left(27 a^{2} + 30\right)\cdot 47^{8} + \left(7 a^{2} + 12 a + 37\right)\cdot 47^{9} + \left(16 a^{2} + 45 a + 40\right)\cdot 47^{10} + \left(20 a^{2} + 24 a + 36\right)\cdot 47^{11} + \left(41 a^{2} + 21 a + 8\right)\cdot 47^{12} + \left(20 a^{2} + 10 a + 36\right)\cdot 47^{13} + \left(28 a^{2} + 25 a + 3\right)\cdot 47^{14} + \left(6 a^{2} + 9 a + 32\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 42 a^{2} + 41 a + 1 + \left(19 a^{2} + 45 a + 3\right)\cdot 47 + \left(46 a^{2} + 2 a + 38\right)\cdot 47^{2} + \left(24 a^{2} + 35 a + 26\right)\cdot 47^{3} + \left(25 a^{2} + 38 a + 15\right)\cdot 47^{4} + \left(5 a^{2} + 21 a + 2\right)\cdot 47^{5} + \left(27 a^{2} + 2 a + 28\right)\cdot 47^{6} + \left(12 a^{2} + 29 a + 37\right)\cdot 47^{7} + \left(42 a^{2} + 16 a + 10\right)\cdot 47^{8} + \left(14 a^{2} + 16 a + 6\right)\cdot 47^{9} + \left(34 a^{2} + 3 a + 35\right)\cdot 47^{10} + \left(34 a^{2} + 34 a + 25\right)\cdot 47^{11} + \left(27 a^{2} + 44 a + 27\right)\cdot 47^{12} + \left(21 a^{2} + 13 a + 1\right)\cdot 47^{13} + \left(34 a^{2} + 31 a + 28\right)\cdot 47^{14} + \left(37 a^{2} + 12 a + 6\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 37 + 7\cdot 47 + 43\cdot 47^{2} + 17\cdot 47^{3} + 36\cdot 47^{4} + 26\cdot 47^{5} + 18\cdot 47^{6} + 14\cdot 47^{7} + 18\cdot 47^{8} + 44\cdot 47^{9} + 24\cdot 47^{10} + 47^{11} + 13\cdot 47^{12} + 34\cdot 47^{13} + 28\cdot 47^{14} + 45\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 29 a^{2} + a + 22 + \left(5 a^{2} + 27 a + 21\right)\cdot 47 + \left(28 a^{2} + 10 a + 1\right)\cdot 47^{2} + \left(16 a^{2} + 11 a + 10\right)\cdot 47^{3} + \left(2 a^{2} + 9 a + 16\right)\cdot 47^{4} + \left(26 a^{2} + 32 a + 43\right)\cdot 47^{5} + \left(20 a^{2} + 12 a + 14\right)\cdot 47^{6} + \left(14 a^{2} + 15 a + 41\right)\cdot 47^{7} + \left(32 a^{2} + 33 a + 37\right)\cdot 47^{8} + \left(13 a^{2} + 9 a + 3\right)\cdot 47^{9} + \left(9 a^{2} + 41 a + 32\right)\cdot 47^{10} + \left(34 a^{2} + 17 a + 24\right)\cdot 47^{11} + \left(23 a^{2} + 42 a + 19\right)\cdot 47^{12} + \left(12 a^{2} + 29 a + 30\right)\cdot 47^{13} + \left(15 a^{2} + 22 a + 36\right)\cdot 47^{14} + \left(33 a^{2} + 35 a + 44\right)\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 44 + 36\cdot 47 + 17\cdot 47^{2} + 38\cdot 47^{3} + 9\cdot 47^{4} + 27\cdot 47^{5} + 44\cdot 47^{6} + 10\cdot 47^{7} + 9\cdot 47^{8} + 25\cdot 47^{9} + 20\cdot 47^{10} + 47^{12} + 13\cdot 47^{13} + 25\cdot 47^{14} + 26\cdot 47^{15} +O\left(47^{ 16 }\right)$
$r_{ 9 }$ $=$ $ 32 + 45\cdot 47 + 3\cdot 47^{2} + 23\cdot 47^{3} + 41\cdot 47^{4} + 24\cdot 47^{5} + 26\cdot 47^{6} + 44\cdot 47^{7} + 31\cdot 47^{8} + 27\cdot 47^{9} + 29\cdot 47^{10} + 46\cdot 47^{11} + 9\cdot 47^{12} + 40\cdot 47^{14} + 30\cdot 47^{15} +O\left(47^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,3)(2,7,5)(6,8,9)$
$(1,3,4)(6,8,9)$
$(1,8,2)(3,6,5)(4,9,7)$
$(1,6)(2,5)(3,8)(4,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,6)(2,5)(3,8)(4,9)$ $0$
$2$ $3$ $(1,4,3)(2,7,5)(6,8,9)$ $-3$
$3$ $3$ $(1,3,4)(2,7,5)$ $0$
$3$ $3$ $(1,4,3)(2,5,7)$ $0$
$6$ $3$ $(1,8,2)(3,6,5)(4,9,7)$ $0$
$6$ $3$ $(1,9,7)(2,3,8)(4,6,5)$ $0$
$6$ $3$ $(1,7,9)(2,8,3)(4,5,6)$ $0$
$9$ $6$ $(1,5,3,2,4,7)(6,9)$ $0$
$9$ $6$ $(1,7,4,2,3,5)(6,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.