Properties

Label 6.317159e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 317159^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$3209114399764379881334689799= 317159^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 4 x^{5} - 4 x^{4} + 4 x^{3} - 4 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 14 + \left(12 a + 39\right)\cdot 47 + \left(23 a + 3\right)\cdot 47^{2} + \left(22 a + 2\right)\cdot 47^{3} + \left(43 a + 46\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 9 + \left(17 a + 26\right)\cdot 47 + \left(26 a + 19\right)\cdot 47^{2} + \left(27 a + 2\right)\cdot 47^{3} + \left(5 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 23 + \left(30 a + 21\right)\cdot 47 + \left(9 a + 4\right)\cdot 47^{2} + \left(7 a + 43\right)\cdot 47^{3} + \left(34 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 45 + \left(16 a + 23\right)\cdot 47 + \left(37 a + 40\right)\cdot 47^{2} + 39 a\cdot 47^{3} + \left(12 a + 36\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 5\cdot 47 + 27\cdot 47^{2} + 37\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 2 + \left(29 a + 41\right)\cdot 47 + \left(20 a + 7\right)\cdot 47^{2} + \left(19 a + 31\right)\cdot 47^{3} + \left(41 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a + 35 + \left(34 a + 30\right)\cdot 47 + \left(23 a + 37\right)\cdot 47^{2} + \left(24 a + 23\right)\cdot 47^{3} + \left(3 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.