Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 34 a + 14 + \left(12 a + 39\right)\cdot 47 + \left(23 a + 3\right)\cdot 47^{2} + \left(22 a + 2\right)\cdot 47^{3} + \left(43 a + 46\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 a + 9 + \left(17 a + 26\right)\cdot 47 + \left(26 a + 19\right)\cdot 47^{2} + \left(27 a + 2\right)\cdot 47^{3} + \left(5 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 a + 23 + \left(30 a + 21\right)\cdot 47 + \left(9 a + 4\right)\cdot 47^{2} + \left(7 a + 43\right)\cdot 47^{3} + \left(34 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 36 a + 45 + \left(16 a + 23\right)\cdot 47 + \left(37 a + 40\right)\cdot 47^{2} + 39 a\cdot 47^{3} + \left(12 a + 36\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 5\cdot 47 + 27\cdot 47^{2} + 37\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 27 a + 2 + \left(29 a + 41\right)\cdot 47 + \left(20 a + 7\right)\cdot 47^{2} + \left(19 a + 31\right)\cdot 47^{3} + \left(41 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 13 a + 35 + \left(34 a + 30\right)\cdot 47 + \left(23 a + 37\right)\cdot 47^{2} + \left(24 a + 23\right)\cdot 47^{3} + \left(3 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $21$ |
$2$ |
$(1,2)$ |
$4$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$2$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$3$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$2$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$-1$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$-1$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.