Properties

Label 6.315631e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 315631^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$3132551765093606140082367151= 315631^{5} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - 2 x^{4} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 163 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 163 }$: $ x^{2} + 159 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 46 + 120\cdot 163 + 63\cdot 163^{2} + 62\cdot 163^{3} + 5\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 100 a + 25 + \left(71 a + 81\right)\cdot 163 + \left(39 a + 131\right)\cdot 163^{2} + \left(2 a + 129\right)\cdot 163^{3} + \left(66 a + 60\right)\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 a + 23 + \left(162 a + 69\right)\cdot 163 + \left(76 a + 150\right)\cdot 163^{2} + \left(49 a + 65\right)\cdot 163^{3} + \left(132 a + 143\right)\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 109 + 86\cdot 163 + 9\cdot 163^{2} + 100\cdot 163^{3} + 126\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 162\cdot 163 + 108\cdot 163^{2} + 7\cdot 163^{3} + 22\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 125 a + 12 + 28\cdot 163 + \left(86 a + 133\right)\cdot 163^{2} + \left(113 a + 23\right)\cdot 163^{3} + \left(30 a + 134\right)\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 63 a + 99 + \left(91 a + 104\right)\cdot 163 + \left(123 a + 54\right)\cdot 163^{2} + \left(160 a + 99\right)\cdot 163^{3} + \left(96 a + 159\right)\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.