Properties

Label 6.2e9_5e3_7e4.9t13.1c1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 2^{9} \cdot 5^{3} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$153664000= 2^{9} \cdot 5^{3} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 2 x^{7} + 6 x^{6} + 9 x^{5} - 3 x^{3} - 12 x^{2} - 11 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd
Determinant: 1.2e3_5.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 31 a^{2} + 19 a + 36 + \left(4 a^{2} + 53 a + 20\right)\cdot 59 + \left(2 a^{2} + 14 a + 44\right)\cdot 59^{2} + \left(46 a^{2} + 5 a + 56\right)\cdot 59^{3} + \left(39 a^{2} + 21 a + 34\right)\cdot 59^{4} + \left(56 a^{2} + 10 a + 38\right)\cdot 59^{5} + \left(34 a^{2} + 26 a + 10\right)\cdot 59^{6} + \left(35 a^{2} + 29 a + 17\right)\cdot 59^{7} + \left(47 a^{2} + 32 a + 56\right)\cdot 59^{8} + \left(10 a^{2} + 55 a + 9\right)\cdot 59^{9} + \left(56 a^{2} + 27 a + 32\right)\cdot 59^{10} + \left(18 a^{2} + 41 a + 8\right)\cdot 59^{11} + \left(38 a^{2} + 13 a + 54\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 53 + 27\cdot 59 + 54\cdot 59^{2} + 29\cdot 59^{3} + 45\cdot 59^{4} + 34\cdot 59^{5} + 53\cdot 59^{6} + 32\cdot 59^{7} + 20\cdot 59^{8} + 5\cdot 59^{9} + 35\cdot 59^{10} + 6\cdot 59^{11} + 42\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 30 a^{2} + 53 a + 17 + \left(6 a^{2} + 29 a + 39\right)\cdot 59 + \left(57 a^{2} + 47 a + 58\right)\cdot 59^{2} + \left(13 a^{2} + 51 a + 52\right)\cdot 59^{3} + \left(48 a^{2} + 46 a + 53\right)\cdot 59^{4} + \left(35 a^{2} + 13 a + 6\right)\cdot 59^{5} + \left(34 a^{2} + 50 a + 19\right)\cdot 59^{6} + \left(4 a^{2} + 7 a + 42\right)\cdot 59^{7} + \left(39 a^{2} + 55 a + 7\right)\cdot 59^{8} + \left(50 a^{2} + 41 a + 47\right)\cdot 59^{9} + \left(53 a^{2} + 10 a + 16\right)\cdot 59^{10} + \left(47 a^{2} + a + 3\right)\cdot 59^{11} + \left(45 a^{2} + 4 a + 15\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 50 a^{2} + 32 a + 1 + \left(50 a^{2} + 29 a + 57\right)\cdot 59 + \left(33 a^{2} + 2 a + 51\right)\cdot 59^{2} + \left(16 a^{2} + 17 a + 56\right)\cdot 59^{3} + \left(30 a^{2} + 35 a + 22\right)\cdot 59^{4} + \left(36 a^{2} + 34 a + 30\right)\cdot 59^{5} + \left(57 a^{2} + 8 a + 7\right)\cdot 59^{6} + \left(44 a^{2} + 17 a + 9\right)\cdot 59^{7} + \left(31 a^{2} + 17 a + 23\right)\cdot 59^{8} + \left(37 a^{2} + 12 a + 20\right)\cdot 59^{9} + \left(39 a^{2} + 2 a + 16\right)\cdot 59^{10} + \left(18 a^{2} + 6 a + 27\right)\cdot 59^{11} + \left(56 a^{2} + 56 a + 35\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 49 a + 42 + \left(18 a^{2} + 21 a + 38\right)\cdot 59 + \left(16 a^{2} + 5 a + 40\right)\cdot 59^{2} + \left(48 a^{2} + 27 a + 29\right)\cdot 59^{3} + \left(15 a^{2} + 27 a + 24\right)\cdot 59^{4} + \left(6 a^{2} + 10 a + 26\right)\cdot 59^{5} + \left(56 a^{2} + 6 a + 51\right)\cdot 59^{6} + \left(56 a^{2} + 14 a + 39\right)\cdot 59^{7} + \left(37 a^{2} + 17 a + 23\right)\cdot 59^{8} + \left(18 a^{2} + 23 a + 58\right)\cdot 59^{9} + \left(27 a^{2} + 36 a + 6\right)\cdot 59^{10} + \left(25 a^{2} + 27 a + 7\right)\cdot 59^{11} + \left(31 a^{2} + 32 a + 26\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 21 a^{2} + 16 a + 46 + \left(34 a^{2} + 7 a + 33\right)\cdot 59 + \left(44 a^{2} + 6 a + 36\right)\cdot 59^{2} + \left(55 a^{2} + 39 a + 54\right)\cdot 59^{3} + \left(53 a^{2} + 43 a + 13\right)\cdot 59^{4} + \left(16 a^{2} + 34 a + 42\right)\cdot 59^{5} + \left(27 a^{2} + 2 a + 53\right)\cdot 59^{6} + \left(56 a^{2} + 37 a + 57\right)\cdot 59^{7} + \left(40 a^{2} + 45 a + 13\right)\cdot 59^{8} + \left(48 a^{2} + 52 a + 1\right)\cdot 59^{9} + \left(36 a^{2} + 11 a + 19\right)\cdot 59^{10} + \left(44 a^{2} + 30 a + 51\right)\cdot 59^{11} + \left(40 a^{2} + 22 a + 17\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 31 + 40\cdot 59^{2} + 42\cdot 59^{3} + 13\cdot 59^{4} + 9\cdot 59^{5} + 50\cdot 59^{6} + 44\cdot 59^{7} + 18\cdot 59^{8} + 58\cdot 59^{9} + 18\cdot 59^{10} + 32\cdot 59^{11} + 25\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 37 a^{2} + 8 a + 56 + \left(3 a^{2} + 35 a + 56\right)\cdot 59 + \left(23 a^{2} + 41 a + 15\right)\cdot 59^{2} + \left(55 a^{2} + 36 a + 9\right)\cdot 59^{3} + \left(47 a^{2} + 2 a + 3\right)\cdot 59^{4} + \left(24 a^{2} + 14 a + 11\right)\cdot 59^{5} + \left(25 a^{2} + 24 a + 18\right)\cdot 59^{6} + \left(37 a^{2} + 12 a + 23\right)\cdot 59^{7} + \left(38 a^{2} + 9 a + 26\right)\cdot 59^{8} + \left(10 a^{2} + 50 a + 9\right)\cdot 59^{9} + \left(22 a^{2} + 28 a + 17\right)\cdot 59^{10} + \left(21 a^{2} + 11 a + 36\right)\cdot 59^{11} + \left(23 a^{2} + 48 a + 43\right)\cdot 59^{12} +O\left(59^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 15 + 20\cdot 59 + 11\cdot 59^{2} + 21\cdot 59^{3} + 23\cdot 59^{4} + 36\cdot 59^{5} + 30\cdot 59^{6} + 27\cdot 59^{7} + 45\cdot 59^{8} + 25\cdot 59^{9} + 14\cdot 59^{10} + 4\cdot 59^{11} + 35\cdot 59^{12} +O\left(59^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,4)(2,7,9)(3,5,6)$
$(2,5)(3,7)(4,8)(6,9)$
$(1,7,5)(2,3,4)(6,8,9)$
$(2,9,7)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,6)(2,7)(3,4)(5,8)$$0$
$2$$3$$(1,8,4)(2,7,9)(3,5,6)$$-3$
$3$$3$$(1,8,4)(3,6,5)$$0$
$3$$3$$(1,4,8)(3,5,6)$$0$
$6$$3$$(1,7,5)(2,3,4)(6,8,9)$$0$
$6$$3$$(1,5,7)(2,4,3)(6,9,8)$$0$
$6$$3$$(1,2,5)(3,4,9)(6,8,7)$$0$
$9$$6$$(1,3,8,6,4,5)(2,7)$$0$
$9$$6$$(1,5,4,6,8,3)(2,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.