Properties

Label 6.2e9_149e4.20t35.2
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{9} \cdot 149^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$252356813312= 2^{9} \cdot 149^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 10 x^{3} + 12 x^{2} - 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 11 + 6\cdot 41 + 8\cdot 41^{2} + 11\cdot 41^{3} + 22\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 36 + \left(13 a + 19\right)\cdot 41 + \left(3 a + 26\right)\cdot 41^{2} + \left(18 a + 16\right)\cdot 41^{3} + \left(16 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 3 + \left(16 a + 20\right)\cdot 41 + \left(3 a + 8\right)\cdot 41^{2} + \left(18 a + 5\right)\cdot 41^{3} + \left(9 a + 4\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 11\cdot 41 + 14\cdot 41^{2} + 7\cdot 41^{3} + 19\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 14 + \left(24 a + 39\right)\cdot 41 + \left(37 a + 1\right)\cdot 41^{2} + \left(22 a + 15\right)\cdot 41^{3} + \left(31 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 21 + \left(27 a + 25\right)\cdot 41 + \left(37 a + 22\right)\cdot 41^{2} + \left(22 a + 26\right)\cdot 41^{3} + \left(24 a + 26\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,3)(5,6)$
$(1,3,4,2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,4)(2,3)(5,6)$ $0$
$15$ $2$ $(2,4)(5,6)$ $-2$
$20$ $3$ $(1,4,5)(2,6,3)$ $0$
$30$ $4$ $(2,5,4,6)$ $0$
$24$ $5$ $(1,3,4,6,2)$ $1$
$20$ $6$ $(1,3,4,2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.