Properties

Label 6.2e9_149e4.20t35.1
Dimension 6
Group $S_5$
Conductor $ 2^{9} \cdot 149^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$252356813312= 2^{9} \cdot 149^{4} $
Artin number field: Splitting field of $f= x^{5} - 5 x^{3} - 5 x^{2} - 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 1 + 9 a\cdot 41 + \left(6 a + 26\right)\cdot 41^{2} + 16 a\cdot 41^{3} + \left(4 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 5\cdot 41 + 18\cdot 41^{2} + 30\cdot 41^{3} + 23\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 32 + \left(21 a + 10\right)\cdot 41 + \left(32 a + 4\right)\cdot 41^{2} + \left(38 a + 3\right)\cdot 41^{3} + \left(31 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 38 + \left(31 a + 2\right)\cdot 41 + \left(34 a + 35\right)\cdot 41^{2} + \left(24 a + 1\right)\cdot 41^{3} + \left(36 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 27 + \left(19 a + 21\right)\cdot 41 + \left(8 a + 39\right)\cdot 41^{2} + \left(2 a + 4\right)\cdot 41^{3} + \left(9 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.