Properties

Label 6.50207472896.12t108.b
Dimension $6$
Group $V_4^2:(S_3\times C_2)$
Conductor $50207472896$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$V_4^2:(S_3\times C_2)$
Conductor:\(50207472896\)\(\medspace = 2^{8} \cdot 7^{3} \cdot 83^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.264647824.1
Galois orbit size: $1$
Smallest permutation container: 12T108
Parity: even
Projective image: $C_2^3:S_4$
Projective field: Galois closure of 8.0.264647824.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{3} + 2x + 9 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 4 + 3\cdot 11 + 9\cdot 11^{2} + 7\cdot 11^{3} + 7\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} + 2\cdot 11^{8} + 6\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( a^{2} + 5 a + \left(8 a^{2} + 6\right)\cdot 11 + \left(6 a^{2} + 6 a + 9\right)\cdot 11^{2} + \left(a^{2} + a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 8 a + 5\right)\cdot 11^{4} + \left(6 a^{2} + 9 a + 6\right)\cdot 11^{5} + \left(6 a^{2} + 8 a + 6\right)\cdot 11^{6} + \left(10 a^{2} + 9 a + 9\right)\cdot 11^{7} + \left(8 a + 7\right)\cdot 11^{8} + \left(6 a^{2} + 2 a + 9\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 a^{2} + 4 a + 9 + \left(4 a^{2} + 5 a + 5\right)\cdot 11 + \left(6 a^{2} + 2 a + 10\right)\cdot 11^{2} + \left(7 a^{2} + 9 a\right)\cdot 11^{3} + \left(10 a^{2} + 3 a\right)\cdot 11^{4} + \left(3 a^{2} + 5 a + 5\right)\cdot 11^{5} + \left(6 a^{2} + 5 a + 2\right)\cdot 11^{6} + \left(8 a^{2} + 5 a + 8\right)\cdot 11^{7} + \left(a^{2} + 8\right)\cdot 11^{8} + \left(9 a^{2} + 6 a + 7\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a^{2} + 8 a + \left(7 a^{2} + 2\right)\cdot 11 + \left(9 a^{2} + 7 a\right)\cdot 11^{2} + \left(3 a^{2} + 7 a + 7\right)\cdot 11^{3} + \left(10 a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(8 a^{2} + 4 a + 7\right)\cdot 11^{5} + \left(10 a^{2} + 6 a + 4\right)\cdot 11^{6} + \left(5 a^{2} + 10 a + 8\right)\cdot 11^{7} + \left(4 a^{2} + 8 a + 8\right)\cdot 11^{8} + \left(5 a^{2} + 6 a + 2\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a^{2} + 2 a + 10 + \left(9 a^{2} + 9 a + 3\right)\cdot 11 + \left(8 a^{2} + 3 a + 1\right)\cdot 11^{2} + \left(a + 2\right)\cdot 11^{3} + \left(2 a^{2} + 4 a + 6\right)\cdot 11^{4} + \left(4 a^{2} + 3 a + 10\right)\cdot 11^{5} + \left(7 a^{2} + 8 a + 3\right)\cdot 11^{6} + \left(10 a^{2} + 6 a + 2\right)\cdot 11^{7} + \left(6 a + 4\right)\cdot 11^{8} + \left(2 a^{2} + 9 a + 4\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 9 + 11 + 5\cdot 11^{2} + 5\cdot 11^{3} + 9\cdot 11^{4} + 7\cdot 11^{6} + 9\cdot 11^{7} + 2\cdot 11^{8} + 2\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 7 a^{2} + 4 a + 8 + \left(4 a^{2} + a + 8\right)\cdot 11 + \left(6 a^{2} + a + 1\right)\cdot 11^{2} + \left(8 a^{2} + 8 a + 5\right)\cdot 11^{3} + \left(a^{2} + 9 a + 9\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{6} + \left(5 a + 7\right)\cdot 11^{7} + \left(9 a^{2} + 6 a + 7\right)\cdot 11^{8} + \left(2 a^{2} + 9 a + 1\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 8 a^{2} + 10 a + 4 + \left(9 a^{2} + 4 a + 1\right)\cdot 11 + \left(5 a^{2} + a + 6\right)\cdot 11^{2} + \left(10 a^{2} + 5 a + 8\right)\cdot 11^{3} + \left(4 a + 1\right)\cdot 11^{4} + \left(9 a^{2} + a + 8\right)\cdot 11^{5} + \left(4 a^{2} + 10 a + 7\right)\cdot 11^{6} + \left(7 a^{2} + 5 a + 6\right)\cdot 11^{7} + \left(4 a^{2} + a + 1\right)\cdot 11^{8} + \left(7 a^{2} + 9 a + 9\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(4,6)$
$(2,7,5)(4,6,8)$
$(3,8)(4,6)$
$(1,5)(2,7)$
$(1,4,5,6,7,8)(2,3)$
$(1,7)(2,5)$
$(1,5)(2,7)(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$3$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $-2$
$4$ $2$ $(1,6)(2,3)(4,7)(5,8)$ $0$
$6$ $2$ $(3,8)(4,6)$ $-2$
$6$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $2$
$12$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $-2$
$12$ $2$ $(1,2)(3,6)$ $0$
$32$ $3$ $(1,5,7)(4,6,8)$ $0$
$12$ $4$ $(1,6,5,8)(2,3,7,4)$ $0$
$12$ $4$ $(1,2,7,5)(3,6,8,4)$ $0$
$12$ $4$ $(1,4,2,8)(3,5,6,7)$ $2$
$24$ $4$ $(1,6,7,8)(2,3,5,4)$ $0$
$24$ $4$ $(2,5)(3,6,8,4)$ $0$
$32$ $6$ $(1,4,5,6,7,8)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.