Properties

Label 6.2e8_5e4_47e4.18t51.2c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{8} \cdot 5^{4} \cdot 47^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$780748960000= 2^{8} \cdot 5^{4} \cdot 47^{4} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 2 x^{7} + 12 x^{6} - 4 x^{5} - 10 x^{4} + 2 x^{3} + 6 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{3} + 3 x + 86 $
Roots:
$r_{ 1 }$ $=$ $ 20 a^{2} + 21 a + 72 + \left(39 a^{2} + 83 a + 43\right)\cdot 89 + \left(16 a^{2} + 61 a + 81\right)\cdot 89^{2} + \left(74 a^{2} + 53 a + 13\right)\cdot 89^{3} + \left(52 a^{2} + 82 a + 17\right)\cdot 89^{4} + \left(35 a^{2} + 46 a + 59\right)\cdot 89^{5} + \left(26 a^{2} + 70 a + 87\right)\cdot 89^{6} + \left(52 a^{2} + 43 a + 18\right)\cdot 89^{7} + \left(54 a^{2} + 24 a + 28\right)\cdot 89^{8} + \left(14 a^{2} + 25 a + 64\right)\cdot 89^{9} + \left(28 a^{2} + 71 a + 15\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 18 + 3\cdot 89 + 10\cdot 89^{2} + 58\cdot 89^{3} + 12\cdot 89^{4} + 22\cdot 89^{5} + 41\cdot 89^{6} + 16\cdot 89^{7} + 12\cdot 89^{8} + 25\cdot 89^{9} + 50\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 56 a^{2} + 87 a + 7 + \left(12 a^{2} + 68 a + 30\right)\cdot 89 + \left(19 a^{2} + 84 a + 65\right)\cdot 89^{2} + \left(32 a^{2} + 12 a + 82\right)\cdot 89^{3} + \left(25 a^{2} + 42 a + 41\right)\cdot 89^{4} + \left(45 a^{2} + 38 a + 2\right)\cdot 89^{5} + \left(66 a^{2} + 82 a + 52\right)\cdot 89^{6} + \left(59 a^{2} + 7 a + 39\right)\cdot 89^{7} + \left(19 a^{2} + 73 a + 12\right)\cdot 89^{8} + \left(88 a^{2} + 57 a + 71\right)\cdot 89^{9} + \left(6 a^{2} + 31 a + 67\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 39 a^{2} + 87 a + 62 + \left(28 a^{2} + 84 a + 61\right)\cdot 89 + \left(35 a^{2} + 54 a + 8\right)\cdot 89^{2} + \left(65 a^{2} + 14 a + 60\right)\cdot 89^{3} + \left(32 a^{2} + 48 a + 56\right)\cdot 89^{4} + \left(53 a^{2} + 27 a + 18\right)\cdot 89^{5} + \left(59 a^{2} + 77 a + 38\right)\cdot 89^{6} + \left(88 a^{2} + 40 a + 8\right)\cdot 89^{7} + \left(75 a^{2} + 46 a + 36\right)\cdot 89^{8} + \left(63 a^{2} + 8 a + 22\right)\cdot 89^{9} + \left(78 a^{2} + 12 a + 33\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 83 a^{2} + 4 a + 61 + \left(47 a^{2} + 24 a + 11\right)\cdot 89 + \left(34 a^{2} + 38 a + 7\right)\cdot 89^{2} + \left(80 a^{2} + 61 a + 1\right)\cdot 89^{3} + \left(30 a^{2} + 87 a + 53\right)\cdot 89^{4} + \left(79 a^{2} + 22 a + 70\right)\cdot 89^{5} + \left(51 a^{2} + 18 a + 22\right)\cdot 89^{6} + \left(29 a^{2} + 40 a + 68\right)\cdot 89^{7} + \left(82 a^{2} + 58 a + 48\right)\cdot 89^{8} + \left(25 a^{2} + 22 a + 35\right)\cdot 89^{9} + \left(3 a^{2} + 45 a + 60\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 36 + 79\cdot 89 + 69\cdot 89^{2} + 46\cdot 89^{3} + 5\cdot 89^{4} + 22\cdot 89^{5} + 67\cdot 89^{6} + 41\cdot 89^{7} + 25\cdot 89^{8} + 48\cdot 89^{9} + 81\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 79 + 6\cdot 89 + 49\cdot 89^{2} + 65\cdot 89^{3} + 6\cdot 89^{4} + 78\cdot 89^{5} + 29\cdot 89^{6} + 82\cdot 89^{7} + 18\cdot 89^{8} + 48\cdot 89^{9} + 6\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 13 a^{2} + 26 a + 58 + \left(51 a^{2} + 24 a + 67\right)\cdot 89 + \left(84 a^{2} + 61 a + 39\right)\cdot 89^{2} + \left(82 a^{2} + 55 a + 31\right)\cdot 89^{3} + \left(35 a^{2} + 66 a + 72\right)\cdot 89^{4} + \left(56 a^{2} + 85 a + 11\right)\cdot 89^{5} + \left(73 a^{2} + 63 a + 4\right)\cdot 89^{6} + \left(30 a^{2} + 51 a + 65\right)\cdot 89^{7} + \left(79 a^{2} + 32 a + 77\right)\cdot 89^{8} + \left(40 a^{2} + 12 a + 27\right)\cdot 89^{9} + \left(33 a^{2} + 72 a + 26\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 56 a^{2} + 42 a + 55 + \left(87 a^{2} + 70 a + 51\right)\cdot 89 + \left(76 a^{2} + 54 a + 24\right)\cdot 89^{2} + \left(20 a^{2} + 68 a + 85\right)\cdot 89^{3} + 28 a\cdot 89^{4} + \left(86 a^{2} + 45 a + 71\right)\cdot 89^{5} + \left(77 a^{2} + 43 a + 12\right)\cdot 89^{6} + \left(5 a^{2} + 82 a + 15\right)\cdot 89^{7} + \left(44 a^{2} + 31 a + 7\right)\cdot 89^{8} + \left(33 a^{2} + 51 a + 13\right)\cdot 89^{9} + \left(27 a^{2} + 34 a + 14\right)\cdot 89^{10} +O\left(89^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,9)(2,7,6)$
$(1,8,9)(3,5,4)$
$(1,8)(2,6)(3,4)$
$(1,3)(4,8)(5,9)$
$(1,3,2)(4,6,8)(5,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,8)(2,6)(3,4)$$0$
$9$$2$$(1,3)(4,8)(5,9)$$-2$
$9$$2$$(1,4)(2,6)(3,8)(5,9)$$0$
$2$$3$$(1,8,9)(2,6,7)(3,4,5)$$-3$
$6$$3$$(1,3,2)(4,6,8)(5,7,9)$$0$
$6$$3$$(1,8,9)(2,7,6)$$0$
$12$$3$$(1,3,7)(2,8,4)(5,6,9)$$0$
$18$$6$$(1,4,2,8,3,6)(5,7,9)$$0$
$18$$6$$(1,3,8,4,9,5)(2,7,6)$$1$
$18$$6$$(1,4,8,3,9,5)(6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.