Properties

Label 6.2e8_5e2_47e2.9t18.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{8} \cdot 5^{2} \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$14137600= 2^{8} \cdot 5^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 7 x^{7} - 13 x^{6} + 22 x^{5} - 30 x^{4} + 32 x^{3} - 26 x^{2} + 14 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{3} + x + 188 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 71\cdot 193 + 112\cdot 193^{2} + 102\cdot 193^{3} + 170\cdot 193^{4} + 148\cdot 193^{5} + 167\cdot 193^{6} + 33\cdot 193^{7} + 170\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 38 + 52\cdot 193 + 15\cdot 193^{2} + 2\cdot 193^{3} + 109\cdot 193^{4} + 153\cdot 193^{5} + 12\cdot 193^{6} + 26\cdot 193^{7} + 136\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 161 + 63\cdot 193 + 184\cdot 193^{2} + 185\cdot 193^{3} + 163\cdot 193^{4} + 77\cdot 193^{5} + 188\cdot 193^{6} + 5\cdot 193^{7} + 83\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 21 a^{2} + 141 a + 108 + \left(109 a^{2} + 147 a + 175\right)\cdot 193 + \left(99 a^{2} + 83 a + 119\right)\cdot 193^{2} + \left(58 a^{2} + 52 a + 161\right)\cdot 193^{3} + \left(4 a^{2} + 170 a + 161\right)\cdot 193^{4} + \left(73 a^{2} + 167 a + 151\right)\cdot 193^{5} + \left(162 a^{2} + 156 a + 93\right)\cdot 193^{6} + \left(94 a^{2} + 137 a + 156\right)\cdot 193^{7} + \left(71 a^{2} + 4 a + 130\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 60 a^{2} + 185 a + 5 + \left(178 a^{2} + 16 a + 18\right)\cdot 193 + \left(122 a^{2} + 19 a + 53\right)\cdot 193^{2} + \left(5 a^{2} + 146 a + 170\right)\cdot 193^{3} + \left(12 a^{2} + 159 a + 22\right)\cdot 193^{4} + \left(21 a^{2} + 157 a + 170\right)\cdot 193^{5} + \left(185 a^{2} + 58 a + 14\right)\cdot 193^{6} + \left(82 a^{2} + 120 a + 133\right)\cdot 193^{7} + \left(47 a^{2} + 88 a + 11\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 72 a^{2} + 11 a + 142 + \left(141 a^{2} + 138 a + 132\right)\cdot 193 + \left(2 a^{2} + 122 a + 119\right)\cdot 193^{2} + \left(67 a^{2} + 114 a + 38\right)\cdot 193^{3} + \left(128 a^{2} + 153 a + 180\right)\cdot 193^{4} + \left(125 a^{2} + 121 a + 186\right)\cdot 193^{5} + \left(77 a^{2} + 124 a + 165\right)\cdot 193^{6} + \left(96 a^{2} + 31 a + 28\right)\cdot 193^{7} + \left(175 a^{2} + 28 a + 7\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 100 a^{2} + 41 a + 32 + \left(135 a^{2} + 100 a\right)\cdot 193 + \left(90 a^{2} + 179 a + 114\right)\cdot 193^{2} + \left(67 a^{2} + 25 a + 167\right)\cdot 193^{3} + \left(60 a^{2} + 62 a + 134\right)\cdot 193^{4} + \left(187 a^{2} + 96 a + 163\right)\cdot 193^{5} + \left(145 a^{2} + 104 a + 82\right)\cdot 193^{6} + \left(a^{2} + 23 a + 94\right)\cdot 193^{7} + \left(139 a^{2} + 160 a + 111\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 137 a^{2} + 11 a + 185 + \left(9 a^{2} + 96 a + 162\right)\cdot 193 + \left(162 a^{2} + 162 a + 14\right)\cdot 193^{2} + \left(20 a^{2} + 50 a + 116\right)\cdot 193^{3} + \left(56 a^{2} + 19 a + 116\right)\cdot 193^{4} + \left(184 a^{2} + 165 a + 21\right)\cdot 193^{5} + \left(6 a^{2} + 96 a + 89\right)\cdot 193^{6} + \left(181 a^{2} + 11 a + 5\right)\cdot 193^{7} + \left(60 a^{2} + 31 a + 85\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 189 a^{2} + 190 a + 91 + \left(4 a^{2} + 79 a + 95\right)\cdot 193 + \left(101 a^{2} + 11 a + 38\right)\cdot 193^{2} + \left(166 a^{2} + 189 a + 20\right)\cdot 193^{3} + \left(124 a^{2} + 13 a + 98\right)\cdot 193^{4} + \left(180 a^{2} + 63 a + 83\right)\cdot 193^{5} + \left(37 a + 149\right)\cdot 193^{6} + \left(122 a^{2} + 61 a + 94\right)\cdot 193^{7} + \left(84 a^{2} + 73 a + 36\right)\cdot 193^{8} +O\left(193^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(4,7,6)(5,8,9)$
$(4,9)(5,7)(6,8)$
$(4,6,7)(5,8,9)$
$(2,3)(4,6)(8,9)$
$(1,4,9)(2,6,8)(3,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,3)(4,7)(5,8)$ $0$
$9$ $2$ $(4,9)(5,7)(6,8)$ $2$
$9$ $2$ $(1,7)(2,6)(3,4)(8,9)$ $0$
$2$ $3$ $(1,3,2)(4,7,6)(5,8,9)$ $-3$
$6$ $3$ $(1,9,6)(2,8,7)(3,5,4)$ $0$
$6$ $3$ $(1,3,2)(4,6,7)$ $0$
$12$ $3$ $(1,4,9)(2,6,8)(3,7,5)$ $0$
$18$ $6$ $(1,6,9)(2,4,8,3,7,5)$ $0$
$18$ $6$ $(1,3,2)(4,5,6,9,7,8)$ $-1$
$18$ $6$ $(1,6,3,7,2,4)(8,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.