Properties

Label 6.2e8_3e4_5e7.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{7}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$1620000000= 2^{8} \cdot 3^{4} \cdot 5^{7} $
Artin number field: Splitting field of $f= x^{5} + 15 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 37 a + 44 + 19 a\cdot 47 + \left(8 a + 4\right)\cdot 47^{2} + \left(44 a + 44\right)\cdot 47^{3} + \left(30 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 39\cdot 47 + 4\cdot 47^{2} + 9\cdot 47^{3} + 45\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 47 + 9\cdot 47^{3} + 20\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 + 2\cdot 47 + 37\cdot 47^{2} + 47^{3} + 24\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 24 + \left(27 a + 3\right)\cdot 47 + \left(38 a + 1\right)\cdot 47^{2} + \left(2 a + 30\right)\cdot 47^{3} + \left(16 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.