Properties

Label 6.2e8_14389e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{8} \cdot 14389^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$762661464542464= 2^{8} \cdot 14389^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 6 x^{2} + 3 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.14389.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 64 + 276\cdot 311 + 188\cdot 311^{2} + 44\cdot 311^{3} + 34\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 85 + 137\cdot 311 + 132\cdot 311^{2} + 298\cdot 311^{3} + 273\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 119 + 155\cdot 311 + 303\cdot 311^{2} + 113\cdot 311^{3} + 291\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 152 + 234\cdot 311 + 196\cdot 311^{2} + 266\cdot 311^{3} + 17\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 204 + 129\cdot 311 + 111\cdot 311^{2} + 209\cdot 311^{3} + 4\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.