Properties

Label 6.2e6_7e8.7t4.1
Dimension 6
Group $F_7$
Conductor $ 2^{6} \cdot 7^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$F_7$
Conductor:$368947264= 2^{6} \cdot 7^{8} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{3} - 14 x^{2} - 7 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_7$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 7\cdot 17 + 2\cdot 17^{3} + 12\cdot 17^{4} + 9\cdot 17^{5} + 9\cdot 17^{6} + 11\cdot 17^{7} + 16\cdot 17^{8} + 15\cdot 17^{9} + 15\cdot 17^{10} + 5\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 15 a + 5 + \left(16 a^{2} + 10 a + 9\right)\cdot 17 + \left(8 a^{2} + 5\right)\cdot 17^{2} + \left(12 a^{2} + 11 a + 7\right)\cdot 17^{3} + \left(5 a^{2} + 12 a\right)\cdot 17^{4} + \left(4 a^{2} + 14 a + 6\right)\cdot 17^{5} + \left(8 a^{2} + 6 a + 4\right)\cdot 17^{6} + \left(11 a^{2} + 6 a + 16\right)\cdot 17^{7} + \left(13 a^{2} + 4 a + 11\right)\cdot 17^{8} + \left(6 a^{2} + 7 a + 16\right)\cdot 17^{9} + \left(4 a^{2} + 16 a + 4\right)\cdot 17^{10} + \left(8 a^{2} + 9 a + 1\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 4 a + 5 + \left(10 a^{2} + 12 a\right)\cdot 17 + \left(11 a^{2} + 5 a + 8\right)\cdot 17^{2} + \left(2 a^{2} + 10 a + 13\right)\cdot 17^{3} + \left(7 a^{2} + 4 a + 9\right)\cdot 17^{4} + \left(12 a^{2} + 3 a + 7\right)\cdot 17^{5} + \left(15 a^{2} + 4 a + 8\right)\cdot 17^{6} + \left(2 a^{2} + 5 a + 6\right)\cdot 17^{7} + \left(15 a^{2} + 10 a + 7\right)\cdot 17^{8} + \left(3 a^{2} + 7 a + 13\right)\cdot 17^{9} + \left(8 a^{2} + 8 a + 3\right)\cdot 17^{10} + \left(5 a^{2} + 15 a\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{2} + 6 a + 4 + \left(11 a^{2} + 3 a + 6\right)\cdot 17 + \left(11 a^{2} + 6 a + 7\right)\cdot 17^{2} + \left(16 a^{2} + 5 a + 4\right)\cdot 17^{3} + \left(9 a^{2} + 9 a + 3\right)\cdot 17^{4} + \left(11 a + 9\right)\cdot 17^{5} + \left(5 a^{2} + 8 a + 13\right)\cdot 17^{6} + \left(11 a^{2} + 6 a + 4\right)\cdot 17^{7} + \left(12 a^{2} + 2 a + 11\right)\cdot 17^{8} + \left(2 a^{2} + 8 a + 2\right)\cdot 17^{9} + \left(7 a^{2} + 7 a + 1\right)\cdot 17^{10} + \left(9 a^{2} + 12 a + 2\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 4 + \left(10 a^{2} + 8 a + 6\right)\cdot 17 + \left(6 a^{2} + 15 a + 10\right)\cdot 17^{2} + \left(7 a^{2} + a + 4\right)\cdot 17^{4} + \left(4 a^{2} + 2\right)\cdot 17^{5} + \left(4 a^{2} + 13 a + 12\right)\cdot 17^{6} + \left(11 a^{2} + 6 a\right)\cdot 17^{7} + \left(8 a^{2} + 2 a + 3\right)\cdot 17^{8} + \left(15 a^{2} + 5 a + 4\right)\cdot 17^{9} + \left(6 a^{2} + 3 a + 14\right)\cdot 17^{10} + \left(11 a^{2} + 12 a + 9\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 13 a^{2} + 13 a + 9 + \left(12 a^{2} + 13 a + 7\right)\cdot 17 + \left(15 a^{2} + 12 a + 16\right)\cdot 17^{2} + \left(13 a^{2} + 5 a + 3\right)\cdot 17^{3} + \left(2 a^{2} + 11 a + 1\right)\cdot 17^{4} + \left(13 a + 5\right)\cdot 17^{5} + \left(14 a^{2} + 16 a + 7\right)\cdot 17^{6} + \left(2 a^{2} + 4 a + 6\right)\cdot 17^{7} + \left(10 a^{2} + 4 a + 15\right)\cdot 17^{8} + \left(14 a^{2} + 4 a + 14\right)\cdot 17^{9} + \left(a^{2} + 5 a + 10\right)\cdot 17^{10} + \left(6 a + 13\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 13 a + 2 + \left(6 a^{2} + 2 a + 14\right)\cdot 17 + \left(13 a^{2} + 10 a + 2\right)\cdot 17^{2} + \left(4 a^{2} + 2\right)\cdot 17^{3} + \left(a^{2} + 12 a + 3\right)\cdot 17^{4} + \left(12 a^{2} + 7 a + 11\right)\cdot 17^{5} + \left(3 a^{2} + a + 12\right)\cdot 17^{6} + \left(11 a^{2} + 4 a + 4\right)\cdot 17^{7} + \left(7 a^{2} + 10 a + 2\right)\cdot 17^{8} + \left(7 a^{2} + a\right)\cdot 17^{9} + \left(5 a^{2} + 10 a\right)\cdot 17^{10} + \left(16 a^{2} + 11 a + 1\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6,2)(3,5,7)$
$(1,5,3,4,6,2,7)$
$(1,7)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$7$ $2$ $(1,7)(2,5)(3,6)$ $0$
$7$ $3$ $(1,6,2)(3,5,7)$ $0$
$7$ $3$ $(1,2,6)(3,7,5)$ $0$
$7$ $6$ $(1,5,7,4,3,6)$ $0$
$7$ $6$ $(1,6,3,4,7,5)$ $0$
$6$ $7$ $(1,5,3,4,6,2,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.