Properties

Label 6.2e6_7e4_59e4.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{6} \cdot 7^{4} \cdot 59^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$1862002160704= 2^{6} \cdot 7^{4} \cdot 59^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 6 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 34 + \left(63 a + 70\right)\cdot 73 + \left(38 a + 47\right)\cdot 73^{2} + \left(26 a + 26\right)\cdot 73^{3} + \left(40 a + 52\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 36 + \left(9 a + 16\right)\cdot 73 + \left(34 a + 28\right)\cdot 73^{2} + \left(46 a + 67\right)\cdot 73^{3} + 32 a\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 63\cdot 73 + 50\cdot 73^{3} + 25\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 25 + 14 a\cdot 73 + \left(21 a + 10\right)\cdot 73^{2} + \left(63 a + 26\right)\cdot 73^{3} + \left(a + 62\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 26 + \left(58 a + 68\right)\cdot 73 + \left(51 a + 58\right)\cdot 73^{2} + \left(9 a + 48\right)\cdot 73^{3} + \left(71 a + 4\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.