Properties

Label 6.2e6_7e4_17e3.9t13.1c1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 2^{6} \cdot 7^{4} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$754951232= 2^{6} \cdot 7^{4} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 4 x^{7} + 4 x^{6} - 7 x^{5} + 32 x^{4} - x^{3} + 90 x^{2} - 11 x + 92 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd
Determinant: 1.2e2_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 15\cdot 23 + 17\cdot 23^{2} + 8\cdot 23^{3} + 12\cdot 23^{4} + 21\cdot 23^{5} + 4\cdot 23^{6} + 17\cdot 23^{7} + 10\cdot 23^{8} + 6\cdot 23^{9} + 13\cdot 23^{10} + 11\cdot 23^{11} + 15\cdot 23^{12} + 3\cdot 23^{13} + 14\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 13 a^{2} + 13 a + 7 + \left(21 a^{2} + 19 a + 20\right)\cdot 23 + \left(9 a^{2} + 10 a + 3\right)\cdot 23^{2} + \left(9 a^{2} + 13 a + 15\right)\cdot 23^{3} + \left(8 a^{2} + 19 a + 12\right)\cdot 23^{4} + \left(15 a^{2} + 11 a + 12\right)\cdot 23^{5} + \left(8 a^{2} + 18 a + 1\right)\cdot 23^{6} + \left(5 a^{2} + 7 a + 12\right)\cdot 23^{7} + \left(14 a + 5\right)\cdot 23^{8} + \left(2 a^{2} + 19 a + 6\right)\cdot 23^{9} + \left(17 a^{2} + 15 a + 14\right)\cdot 23^{10} + \left(15 a^{2} + a + 4\right)\cdot 23^{11} + \left(15 a^{2} + 4\right)\cdot 23^{12} + \left(5 a^{2} + 6 a + 5\right)\cdot 23^{13} + \left(9 a^{2} + 14 a + 14\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 13 a^{2} + 4 a + 7 + \left(4 a^{2} + 13 a + 5\right)\cdot 23 + \left(10 a^{2} + 6 a + 4\right)\cdot 23^{2} + \left(14 a^{2} + 11 a + 14\right)\cdot 23^{3} + \left(7 a^{2} + 20 a + 11\right)\cdot 23^{4} + \left(19 a^{2} + 15 a + 2\right)\cdot 23^{5} + \left(15 a^{2} + 12 a + 11\right)\cdot 23^{6} + \left(9 a^{2} + 12 a + 2\right)\cdot 23^{7} + \left(13 a^{2} + 22 a\right)\cdot 23^{8} + \left(15 a^{2} + 12 a + 9\right)\cdot 23^{9} + \left(15 a^{2} + 4 a + 12\right)\cdot 23^{10} + \left(14 a^{2} + 3 a + 18\right)\cdot 23^{11} + \left(19 a^{2} + 12 a + 1\right)\cdot 23^{12} + \left(9 a^{2} + 20 a + 3\right)\cdot 23^{13} + \left(6 a^{2} + 18\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 13 a + 17 + \left(9 a^{2} + 14 a + 13\right)\cdot 23 + \left(14 a^{2} + 10 a + 21\right)\cdot 23^{2} + \left(3 a^{2} + 10 a + 12\right)\cdot 23^{3} + \left(a^{2} + 13 a + 14\right)\cdot 23^{4} + \left(13 a^{2} + 11 a + 21\right)\cdot 23^{5} + \left(4 a^{2} + 3 a + 7\right)\cdot 23^{6} + \left(9 a^{2} + 10 a + 22\right)\cdot 23^{7} + \left(4 a^{2} + 11 a + 1\right)\cdot 23^{8} + \left(a^{2} + 18 a + 9\right)\cdot 23^{9} + \left(22 a^{2} + 15 a + 21\right)\cdot 23^{10} + \left(11 a^{2} + 5 a + 5\right)\cdot 23^{11} + \left(16 a^{2} + 4 a + 5\right)\cdot 23^{12} + \left(7 a^{2} + 3 a + 3\right)\cdot 23^{13} + \left(8 a^{2} + 15 a + 8\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 19 a^{2} + 16 a + 19 + \left(17 a^{2} + 4 a + 9\right)\cdot 23 + \left(7 a^{2} + 17 a + 20\right)\cdot 23^{2} + \left(3 a^{2} + 8 a + 4\right)\cdot 23^{3} + \left(9 a^{2} + 7 a + 2\right)\cdot 23^{4} + \left(16 a^{2} + 3 a + 3\right)\cdot 23^{5} + \left(9 a^{2} + 19 a + 7\right)\cdot 23^{6} + \left(11 a^{2} + 7 a + 2\right)\cdot 23^{7} + \left(22 a^{2} + 2 a + 3\right)\cdot 23^{8} + \left(3 a + 1\right)\cdot 23^{9} + \left(19 a^{2} + 6 a + 2\right)\cdot 23^{10} + \left(16 a^{2} + 16 a + 20\right)\cdot 23^{11} + \left(2 a^{2} + 20 a + 9\right)\cdot 23^{12} + \left(a^{2} + 4 a + 17\right)\cdot 23^{13} + \left(22 a^{2} + 10 a + 18\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 22 + 16\cdot 23 + 6\cdot 23^{2} + 15\cdot 23^{3} + 23^{4} + 8\cdot 23^{5} + 12\cdot 23^{6} + 2\cdot 23^{7} + 19\cdot 23^{8} + 21\cdot 23^{9} + 12\cdot 23^{10} + 19\cdot 23^{12} + 4\cdot 23^{13} + 21\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 21 a^{2} + 17 a + 14 + \left(18 a^{2} + 3 a + 3\right)\cdot 23 + \left(18 a + 11\right)\cdot 23^{2} + \left(16 a^{2} + 3 a + 6\right)\cdot 23^{3} + \left(12 a^{2} + 2 a + 22\right)\cdot 23^{4} + \left(16 a^{2} + 8 a + 10\right)\cdot 23^{5} + \left(8 a^{2} + 13\right)\cdot 23^{6} + \left(2 a^{2} + 5 a + 5\right)\cdot 23^{7} + \left(19 a^{2} + 9 a + 6\right)\cdot 23^{8} + \left(20 a^{2} + a + 12\right)\cdot 23^{9} + \left(4 a^{2} + a + 21\right)\cdot 23^{10} + \left(17 a^{2} + a + 12\right)\cdot 23^{11} + \left(3 a^{2} + 21 a + 3\right)\cdot 23^{12} + \left(14 a^{2} + 14 a + 4\right)\cdot 23^{13} + \left(15 a^{2} + 20 a + 10\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 7 + 12\cdot 23 + 19\cdot 23^{2} + 12\cdot 23^{3} + 11\cdot 23^{4} + 4\cdot 23^{5} + 7\cdot 23^{6} + 4\cdot 23^{7} + 12\cdot 23^{8} + 7\cdot 23^{9} + 21\cdot 23^{11} + 19\cdot 23^{12} + 19\cdot 23^{13} + 13\cdot 23^{14} +O\left(23^{ 15 }\right)$
$r_{ 9 }$ $=$ $ 20 a^{2} + 6 a + 1 + \left(19 a^{2} + 13 a + 18\right)\cdot 23 + \left(2 a^{2} + 5 a + 9\right)\cdot 23^{2} + \left(22 a^{2} + 21 a + 1\right)\cdot 23^{3} + \left(6 a^{2} + 5 a + 3\right)\cdot 23^{4} + \left(11 a^{2} + 18 a + 7\right)\cdot 23^{5} + \left(21 a^{2} + 14 a + 3\right)\cdot 23^{6} + \left(7 a^{2} + 2 a\right)\cdot 23^{7} + \left(9 a^{2} + 9 a + 10\right)\cdot 23^{8} + \left(5 a^{2} + 13 a + 18\right)\cdot 23^{9} + \left(13 a^{2} + 2 a + 16\right)\cdot 23^{10} + \left(15 a^{2} + 18 a + 19\right)\cdot 23^{11} + \left(10 a^{2} + 10 a + 12\right)\cdot 23^{12} + \left(7 a^{2} + 19 a + 7\right)\cdot 23^{13} + \left(7 a^{2} + 7 a + 19\right)\cdot 23^{14} +O\left(23^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4)(2,3)(5,6)(7,8)$
$(1,3,5)(2,4,6)(7,8,9)$
$(1,6,8)(4,5,7)$
$(2,3,9)(4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$2$$3$$(1,6,8)(2,9,3)(4,7,5)$$-3$
$3$$3$$(2,3,9)(4,7,5)$$0$
$3$$3$$(2,9,3)(4,5,7)$$0$
$6$$3$$(1,3,5)(2,4,6)(7,8,9)$$0$
$6$$3$$(1,9,5)(2,7,8)(3,4,6)$$0$
$6$$3$$(1,5,9)(2,8,7)(3,6,4)$$0$
$9$$6$$(1,7,8,5,6,4)(2,9)$$0$
$9$$6$$(1,4,6,5,8,7)(2,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.