Properties

Label 6.2e6_7e4_13e4.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 2^{6} \cdot 7^{4} \cdot 13^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$4388797504= 2^{6} \cdot 7^{4} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{9} - x^{7} - 14 x^{6} - 4 x^{5} + 70 x^{4} + 21 x^{3} + 140 x^{2} + 36 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{3} + 3 x + 86 $
Roots:
$r_{ 1 }$ $=$ $ 62 a^{2} + 28 a + 1 + \left(66 a^{2} + 42 a + 31\right)\cdot 89 + \left(80 a^{2} + 43 a + 81\right)\cdot 89^{2} + \left(65 a^{2} + 12 a + 32\right)\cdot 89^{3} + \left(17 a^{2} + 24 a + 15\right)\cdot 89^{4} + \left(60 a^{2} + 26\right)\cdot 89^{5} + \left(70 a^{2} + 9 a + 12\right)\cdot 89^{6} + \left(28 a^{2} + 54 a + 77\right)\cdot 89^{7} + \left(21 a^{2} + 69 a + 10\right)\cdot 89^{8} + \left(11 a^{2} + 82 a + 27\right)\cdot 89^{9} + \left(35 a^{2} + 6 a + 39\right)\cdot 89^{10} + \left(57 a^{2} + 85 a + 24\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 17 + 77\cdot 89 + 69\cdot 89^{2} + 7\cdot 89^{3} + 87\cdot 89^{4} + 82\cdot 89^{5} + 81\cdot 89^{6} + 76\cdot 89^{7} + 9\cdot 89^{8} + 29\cdot 89^{9} + 67\cdot 89^{10} + 71\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 60 a^{2} + 54 a + 86 + \left(34 a^{2} + 55 a + 55\right)\cdot 89 + \left(2 a^{2} + 39 a + 13\right)\cdot 89^{2} + \left(72 a^{2} + 88 a + 45\right)\cdot 89^{3} + \left(24 a^{2} + 13 a + 29\right)\cdot 89^{4} + \left(62 a^{2} + 12 a + 30\right)\cdot 89^{5} + \left(39 a^{2} + 43 a + 39\right)\cdot 89^{6} + \left(80 a^{2} + 80 a + 2\right)\cdot 89^{7} + \left(4 a^{2} + 44 a + 67\right)\cdot 89^{8} + \left(84 a^{2} + 17 a + 83\right)\cdot 89^{9} + \left(31 a^{2} + 84 a + 32\right)\cdot 89^{10} + \left(18 a^{2} + 15 a + 35\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 31 a^{2} + 83 a + 48 + \left(28 a^{2} + 79 a + 37\right)\cdot 89 + \left(68 a^{2} + 53 a + 86\right)\cdot 89^{2} + \left(26 a^{2} + 47 a + 61\right)\cdot 89^{3} + \left(54 a^{2} + 68 a + 42\right)\cdot 89^{4} + \left(29 a^{2} + 57 a + 63\right)\cdot 89^{5} + \left(10 a^{2} + 21 a + 3\right)\cdot 89^{6} + \left(64 a^{2} + 77 a + 63\right)\cdot 89^{7} + \left(9 a^{2} + 7 a + 65\right)\cdot 89^{8} + \left(18 a^{2} + 18 a + 4\right)\cdot 89^{9} + \left(14 a^{2} + 55 a + 6\right)\cdot 89^{10} + \left(19 a^{2} + 80 a + 73\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 68 + 55\cdot 89 + 45\cdot 89^{2} + 39\cdot 89^{3} + 67\cdot 89^{4} + 23\cdot 89^{5} + 64\cdot 89^{6} + 79\cdot 89^{7} + 64\cdot 89^{8} + 31\cdot 89^{9} + 39\cdot 89^{10} + 40\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 58 a^{2} + 79 a + 13 + \left(70 a^{2} + 38 a + 33\right)\cdot 89 + \left(52 a^{2} + 13 a + 55\right)\cdot 89^{2} + \left(43 a^{2} + 57 a + 6\right)\cdot 89^{3} + \left(69 a^{2} + 52 a + 73\right)\cdot 89^{4} + \left(41 a^{2} + 36 a + 87\right)\cdot 89^{5} + \left(9 a^{2} + 23 a + 1\right)\cdot 89^{6} + \left(41 a^{2} + 31 a + 17\right)\cdot 89^{7} + \left(13 a^{2} + a + 73\right)\cdot 89^{8} + \left(25 a^{2} + 77 a + 18\right)\cdot 89^{9} + \left(84 a^{2} + 60 a + 57\right)\cdot 89^{10} + \left(32 a^{2} + 53 a + 11\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 59 + 53\cdot 89 + 8\cdot 89^{2} + 46\cdot 89^{3} + 14\cdot 89^{4} + 74\cdot 89^{5} + 24\cdot 89^{6} + 69\cdot 89^{7} + 59\cdot 89^{8} + 19\cdot 89^{9} + 53\cdot 89^{10} + 54\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 16 a + 75 + \left(79 a^{2} + 59 a + 49\right)\cdot 89 + \left(56 a^{2} + 21 a + 63\right)\cdot 89^{2} + \left(18 a^{2} + 73 a + 45\right)\cdot 89^{3} + \left(54 a^{2} + 56 a + 42\right)\cdot 89^{4} + \left(17 a^{2} + 83 a + 39\right)\cdot 89^{5} + \left(69 a^{2} + 43 a + 32\right)\cdot 89^{6} + \left(72 a^{2} + 69 a + 80\right)\cdot 89^{7} + \left(65 a^{2} + 79 a + 88\right)\cdot 89^{8} + \left(45 a^{2} + 82 a + 59\right)\cdot 89^{9} + \left(79 a^{2} + 61 a + 47\right)\cdot 89^{10} + \left(36 a^{2} + 43 a + 19\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 56 a^{2} + 7 a + 78 + \left(76 a^{2} + 80 a + 50\right)\cdot 89 + \left(5 a^{2} + 5 a + 20\right)\cdot 89^{2} + \left(40 a^{2} + 77 a + 70\right)\cdot 89^{3} + \left(46 a^{2} + 50 a + 72\right)\cdot 89^{4} + \left(55 a^{2} + 76 a + 16\right)\cdot 89^{5} + \left(67 a^{2} + 36 a + 6\right)\cdot 89^{6} + \left(68 a^{2} + 43 a + 68\right)\cdot 89^{7} + \left(62 a^{2} + 63 a + 4\right)\cdot 89^{8} + \left(82 a^{2} + 77 a + 81\right)\cdot 89^{9} + \left(21 a^{2} + 86 a + 12\right)\cdot 89^{10} + \left(13 a^{2} + 76 a + 25\right)\cdot 89^{11} +O\left(89^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,3)(2,5,7)$
$(1,4,2)(3,8,5)(6,7,9)$
$(1,3,9)(4,6,8)$
$(1,8)(2,5)(3,4)(6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,8)(2,5)(3,4)(6,9)$ $0$
$2$ $3$ $(1,9,3)(2,7,5)(4,6,8)$ $-3$
$3$ $3$ $(1,9,3)(2,5,7)$ $0$
$3$ $3$ $(1,3,9)(2,7,5)$ $0$
$6$ $3$ $(1,4,2)(3,8,5)(6,7,9)$ $0$
$6$ $3$ $(1,4,5)(2,9,6)(3,8,7)$ $0$
$6$ $3$ $(1,5,4)(2,6,9)(3,7,8)$ $0$
$9$ $6$ $(1,8,9,6,3,4)(2,7)$ $0$
$9$ $6$ $(1,4,3,6,9,8)(2,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.