Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 54 + 53\cdot 191 + 22\cdot 191^{2} + 92\cdot 191^{3} + 174\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 68 a + 138 + \left(180 a + 122\right)\cdot 191 + \left(56 a + 47\right)\cdot 191^{2} + \left(118 a + 154\right)\cdot 191^{3} + \left(60 a + 100\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 123 a + 15 + \left(10 a + 44\right)\cdot 191 + \left(134 a + 115\right)\cdot 191^{2} + \left(72 a + 24\right)\cdot 191^{3} + \left(130 a + 43\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 98 a + 15 + \left(20 a + 35\right)\cdot 191 + \left(153 a + 143\right)\cdot 191^{2} + \left(154 a + 63\right)\cdot 191^{3} + \left(49 a + 161\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 117 + 116\cdot 191 + 101\cdot 191^{2} + 149\cdot 191^{3} + 149\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 122 + 52\cdot 191 + 58\cdot 191^{2} + 23\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 93 a + 113 + \left(170 a + 148\right)\cdot 191 + \left(37 a + 84\right)\cdot 191^{2} + \left(36 a + 65\right)\cdot 191^{3} + \left(141 a + 56\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $21$ | $2$ | $(1,2)$ | $4$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $2$ |
| $70$ | $3$ | $(1,2,3)$ | $3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $2$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $-1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $-1$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.