Properties

Label 6.2e6_5e3_7e5.9t10.1c1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 2^{6} \cdot 5^{3} \cdot 7^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$134456000= 2^{6} \cdot 5^{3} \cdot 7^{5} $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 2 x^{7} + 4 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd
Determinant: 1.5_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{3} + 2 x + 68 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 56 + \left(29 a^{2} + 69 a + 15\right)\cdot 73 + \left(49 a^{2} + 38 a + 2\right)\cdot 73^{2} + \left(62 a^{2} + 40 a + 29\right)\cdot 73^{3} + \left(70 a^{2} + 71 a + 68\right)\cdot 73^{4} + \left(29 a^{2} + 48\right)\cdot 73^{5} + \left(26 a^{2} + 2 a + 10\right)\cdot 73^{6} + \left(61 a^{2} + 27 a + 17\right)\cdot 73^{7} + \left(31 a^{2} + 58 a + 45\right)\cdot 73^{8} + \left(67 a^{2} + 10 a + 10\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 40 a^{2} + 24 a + 44 + \left(14 a^{2} + 7 a + 52\right)\cdot 73 + \left(8 a^{2} + 57 a + 14\right)\cdot 73^{2} + \left(49 a^{2} + 50 a + 47\right)\cdot 73^{3} + \left(66 a^{2} + 54 a + 17\right)\cdot 73^{4} + \left(43 a^{2} + 17 a + 39\right)\cdot 73^{5} + \left(61 a^{2} + 37 a + 35\right)\cdot 73^{6} + \left(2 a^{2} + 52 a + 23\right)\cdot 73^{7} + \left(27 a^{2} + 67 a + 71\right)\cdot 73^{8} + \left(18 a^{2} + 70 a + 44\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 18 + 30\cdot 73 + 51\cdot 73^{2} + 54\cdot 73^{3} + 25\cdot 73^{4} + 73^{5} + 69\cdot 73^{6} + 33\cdot 73^{7} + 59\cdot 73^{8} + 70\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 40 + 55\cdot 73 + 38\cdot 73^{2} + 33\cdot 73^{3} + 38\cdot 73^{4} + 72\cdot 73^{5} + 18\cdot 73^{6} + 3\cdot 73^{7} + 22\cdot 73^{8} + 41\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 26 a + 69 + \left(31 a^{2} + 69 a + 18\right)\cdot 73 + \left(12 a^{2} + 58 a + 50\right)\cdot 73^{2} + \left(33 a^{2} + 50 a + 62\right)\cdot 73^{3} + \left(66 a^{2} + 53 a + 13\right)\cdot 73^{4} + \left(38 a^{2} + 44 a + 12\right)\cdot 73^{5} + \left(35 a^{2} + 18 a + 47\right)\cdot 73^{6} + \left(51 a^{2} + 52 a + 52\right)\cdot 73^{7} + \left(26 a^{2} + 23 a + 62\right)\cdot 73^{8} + \left(42 a^{2} + 61 a + 25\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 55 a^{2} + 24 a + 64 + \left(39 a^{2} + 56 a + 61\right)\cdot 73 + \left(65 a^{2} + 70 a + 66\right)\cdot 73^{2} + \left(17 a^{2} + 49 a + 29\right)\cdot 73^{3} + \left(28 a^{2} + 69 a + 39\right)\cdot 73^{4} + \left(54 a^{2} + 10 a + 4\right)\cdot 73^{5} + \left(6 a^{2} + 37 a + 11\right)\cdot 73^{6} + \left(51 a^{2} + 40 a + 39\right)\cdot 73^{7} + \left(43 a^{2} + 17 a + 20\right)\cdot 73^{8} + \left(8 a^{2} + 20 a + 56\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 51 a^{2} + 25 a + 10 + \left(18 a^{2} + 9 a + 58\right)\cdot 73 + \left(72 a^{2} + 18 a + 2\right)\cdot 73^{2} + \left(5 a^{2} + 45 a + 14\right)\cdot 73^{3} + \left(51 a^{2} + 21 a + 21\right)\cdot 73^{4} + \left(47 a^{2} + 44 a + 44\right)\cdot 73^{5} + \left(4 a^{2} + 71 a + 32\right)\cdot 73^{6} + \left(19 a^{2} + 52 a + 69\right)\cdot 73^{7} + \left(2 a^{2} + 60 a + 13\right)\cdot 73^{8} + \left(46 a^{2} + 54 a + 33\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 45 a^{2} + 35 a + 43 + \left(12 a^{2} + 7 a + 42\right)\cdot 73 + \left(11 a^{2} + 48 a + 48\right)\cdot 73^{2} + \left(50 a^{2} + 54 a + 36\right)\cdot 73^{3} + \left(8 a^{2} + 20 a + 58\right)\cdot 73^{4} + \left(4 a^{2} + 27 a + 38\right)\cdot 73^{5} + \left(11 a^{2} + 52 a + 14\right)\cdot 73^{6} + \left(33 a^{2} + 66 a + 28\right)\cdot 73^{7} + \left(14 a^{2} + 63 a + 46\right)\cdot 73^{8} + \left(36 a^{2} + 17\right)\cdot 73^{9} +O\left(73^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 22 + 29\cdot 73 + 16\cdot 73^{2} + 57\cdot 73^{3} + 8\cdot 73^{4} + 30\cdot 73^{5} + 52\cdot 73^{6} + 24\cdot 73^{7} + 23\cdot 73^{8} + 64\cdot 73^{9} +O\left(73^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,2,5,3,6,8,9,7)$
$(2,7,6)(3,9,4)$
$(1,5)(2,4)(3,7)(6,9)$
$(1,5,8)(2,6,7)(3,9,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,5)(2,4)(3,7)(6,9)$$0$
$2$$3$$(1,5,8)(2,6,7)(3,9,4)$$-3$
$3$$3$$(1,5,8)(2,7,6)$$0$
$3$$3$$(1,8,5)(2,6,7)$$0$
$9$$6$$(1,7,5,6,8,2)(3,4)$$0$
$9$$6$$(1,2,8,6,5,7)(3,4)$$0$
$6$$9$$(1,4,2,5,3,6,8,9,7)$$0$
$6$$9$$(1,6,9,8,2,3,5,7,4)$$0$
$6$$9$$(1,9,2,5,4,6,8,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.