Properties

Label 6.2e6_491e2.7t5.2c1
Dimension 6
Group $\GL(3,2)$
Conductor $ 2^{6} \cdot 491^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\GL(3,2)$
Conductor:$15429184= 2^{6} \cdot 491^{2} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - x^{5} + 9 x^{4} - 12 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\GL(3,2)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 16 a + 13 + \left(17 a^{2} + 11 a + 3\right)\cdot 19 + \left(4 a^{2} + a + 14\right)\cdot 19^{2} + \left(9 a^{2} + 9 a + 10\right)\cdot 19^{3} + \left(5 a^{2} + 11 a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 9 + \left(4 a^{2} + 13\right)\cdot 19 + \left(18 a^{2} + 18 a + 12\right)\cdot 19^{2} + \left(11 a^{2} + 14 a + 18\right)\cdot 19^{3} + \left(4 a^{2} + 4 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 7\cdot 19 + 9\cdot 19^{2} + 5\cdot 19^{3} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a^{2} + 11 a + 3 + \left(11 a^{2} + a + 13\right)\cdot 19 + \left(17 a + 2\right)\cdot 19^{2} + \left(7 a^{2} + 6 a + 11\right)\cdot 19^{3} + \left(13 a^{2} + 12 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 8 a + 8 + \left(15 a^{2} + 13 a + 11\right)\cdot 19 + \left(4 a + 10\right)\cdot 19^{2} + \left(3 a^{2} + 7 a + 7\right)\cdot 19^{3} + \left(10 a^{2} + 7 a\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a^{2} + 11 a + 13 + \left(18 a^{2} + 5 a + 1\right)\cdot 19 + \left(18 a^{2} + 15 a + 2\right)\cdot 19^{2} + \left(3 a^{2} + 15 a + 10\right)\cdot 19^{3} + \left(4 a^{2} + 6 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 17 a^{2} + 11 a + \left(8 a^{2} + 5 a + 6\right)\cdot 19 + \left(13 a^{2} + 5\right)\cdot 19^{2} + \left(2 a^{2} + 3 a + 12\right)\cdot 19^{3} + \left(14 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,5)(2,6,3,7)$
$(1,3)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,3)(4,7)$$2$
$56$$3$$(2,4,3)(5,6,7)$$0$
$42$$4$$(1,5)(2,6,3,7)$$0$
$24$$7$$(1,7,4,2,6,3,5)$$-1$
$24$$7$$(1,2,5,4,3,7,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.