Properties

Label 6.2e6_3e9_5e3.7t4.1
Dimension 6
Group $F_7$
Conductor $ 2^{6} \cdot 3^{9} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$F_7$
Conductor:$157464000= 2^{6} \cdot 3^{9} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 6 x^{5} - 8 x^{4} + 10 x^{3} - 6 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_7$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 19 a^{2} + a + 6 + \left(2 a^{2} + 8 a + 2\right)\cdot 23 + \left(19 a^{2} + 19 a + 21\right)\cdot 23^{2} + \left(16 a^{2} + 12 a + 20\right)\cdot 23^{3} + \left(14 a^{2} + 5 a + 2\right)\cdot 23^{4} + \left(3 a^{2} + 12 a + 13\right)\cdot 23^{5} + \left(5 a^{2} + 18 a + 22\right)\cdot 23^{6} + \left(16 a^{2} + 10 a + 9\right)\cdot 23^{7} + \left(15 a^{2} + 21 a + 18\right)\cdot 23^{8} + \left(9 a^{2} + 12 a + 11\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + a + 17 + \left(2 a^{2} + 16 a + 1\right)\cdot 23 + \left(20 a^{2} + 2 a + 7\right)\cdot 23^{2} + \left(7 a^{2} + 11 a + 1\right)\cdot 23^{3} + \left(19 a^{2} + a + 9\right)\cdot 23^{4} + 22 a^{2}23^{5} + \left(11 a^{2} + 4 a + 1\right)\cdot 23^{6} + \left(7 a^{2} + 4 a + 6\right)\cdot 23^{7} + \left(12 a^{2} + 8 a + 6\right)\cdot 23^{8} + \left(6 a^{2} + 22 a + 15\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 21 + 11\cdot 23 + 20\cdot 23^{2} + 6\cdot 23^{3} + 15\cdot 23^{4} + 16\cdot 23^{5} + 22\cdot 23^{6} + 7\cdot 23^{7} + 12\cdot 23^{8} + 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 13 + \left(5 a^{2} + 19\right)\cdot 23 + \left(2 a^{2} + 11 a + 15\right)\cdot 23^{2} + \left(14 a^{2} + 13 a + 2\right)\cdot 23^{3} + \left(10 a^{2} + 4 a + 18\right)\cdot 23^{4} + \left(8 a^{2} + 9 a + 12\right)\cdot 23^{5} + \left(12 a^{2} + 8\right)\cdot 23^{6} + \left(22 a^{2} + 4 a + 8\right)\cdot 23^{7} + \left(3 a^{2} + 14 a + 11\right)\cdot 23^{8} + \left(12 a^{2} + 8 a + 1\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 17 a + 8 + \left(2 a^{2} + 16 a\right)\cdot 23 + \left(22 a^{2} + 6 a + 4\right)\cdot 23^{2} + \left(4 a^{2} + 11 a + 21\right)\cdot 23^{3} + \left(4 a^{2} + 19 a + 1\right)\cdot 23^{4} + \left(21 a^{2} + 17 a + 22\right)\cdot 23^{5} + \left(20 a^{2} + 9 a + 19\right)\cdot 23^{6} + \left(21 a^{2} + 15 a + 22\right)\cdot 23^{7} + \left(12 a^{2} + a + 7\right)\cdot 23^{8} + \left(5 a^{2} + 10 a\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 17 a^{2} + 21 a + 11 + \left(17 a^{2} + 21 a + 14\right)\cdot 23 + \left(6 a^{2} + 4\right)\cdot 23^{2} + \left(21 a^{2} + 22 a + 19\right)\cdot 23^{3} + \left(11 a^{2} + 15 a + 6\right)\cdot 23^{4} + \left(19 a^{2} + 10 a + 11\right)\cdot 23^{5} + 5 a^{2}23^{6} + \left(22 a^{2} + 8 a + 18\right)\cdot 23^{7} + \left(17 a^{2} + 16 a + 13\right)\cdot 23^{8} + \left(6 a^{2} + 10 a + 15\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 21 a^{2} + 2 a + 18 + \left(15 a^{2} + 6 a + 18\right)\cdot 23 + \left(21 a^{2} + 5 a + 18\right)\cdot 23^{2} + \left(3 a^{2} + 21 a + 19\right)\cdot 23^{3} + \left(8 a^{2} + 21 a + 14\right)\cdot 23^{4} + \left(16 a^{2} + 18 a + 15\right)\cdot 23^{5} + \left(12 a^{2} + 12 a + 16\right)\cdot 23^{6} + \left(a^{2} + 3 a + 18\right)\cdot 23^{7} + \left(6 a^{2} + 7 a + 21\right)\cdot 23^{8} + \left(5 a^{2} + 4 a + 22\right)\cdot 23^{9} +O\left(23^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,4,5,3,6,2,7)$
$(1,7,6)(2,5,3)$
$(1,5)(2,6)(3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$7$ $2$ $(1,5)(2,6)(3,7)$ $0$
$7$ $3$ $(1,7,6)(2,5,3)$ $0$
$7$ $3$ $(1,6,7)(2,3,5)$ $0$
$7$ $6$ $(1,5,2,7,6,4)$ $0$
$7$ $6$ $(1,4,6,7,2,5)$ $0$
$6$ $7$ $(1,4,5,3,6,2,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.