Properties

Label 6.2e6_3e9_23e4.18t51.3c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{6} \cdot 3^{9} \cdot 23^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$352519065792= 2^{6} \cdot 3^{9} \cdot 23^{4} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{6} + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 211 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 211 }$: $ x^{3} + 2 x + 209 $
Roots:
$r_{ 1 }$ $=$ $ 24 + 210\cdot 211 + 55\cdot 211^{2} + 184\cdot 211^{3} + 51\cdot 211^{4} + 126\cdot 211^{5} + 7\cdot 211^{6} + 183\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 62 + 203\cdot 211 + 61\cdot 211^{2} + 126\cdot 211^{3} + 7\cdot 211^{4} + 51\cdot 211^{5} + 23\cdot 211^{6} + 199\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 125 + 8\cdot 211 + 93\cdot 211^{2} + 111\cdot 211^{3} + 151\cdot 211^{4} + 33\cdot 211^{5} + 180\cdot 211^{6} + 39\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 57 a^{2} + 158 a + 76 + \left(35 a^{2} + 31 a + 117\right)\cdot 211 + \left(133 a^{2} + 85 a + 177\right)\cdot 211^{2} + \left(90 a^{2} + 151 a + 120\right)\cdot 211^{3} + \left(148 a^{2} + 32 a + 127\right)\cdot 211^{4} + \left(42 a^{2} + 14 a + 197\right)\cdot 211^{5} + \left(128 a^{2} + 150 a + 170\right)\cdot 211^{6} + \left(16 a^{2} + 189 a + 162\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 75 a^{2} + 6 a + 100 + \left(110 a^{2} + 60 a + 6\right)\cdot 211 + \left(11 a^{2} + 66 a + 156\right)\cdot 211^{2} + \left(142 a^{2} + 77 a + 48\right)\cdot 211^{3} + \left(22 a^{2} + 175 a + 30\right)\cdot 211^{4} + \left(77 a^{2} + 190 a + 173\right)\cdot 211^{5} + \left(83 a^{2} + 197 a + 40\right)\cdot 211^{6} + \left(190 a^{2} + 121 a + 113\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 141 a^{2} + 121 a + 188 + \left(151 a^{2} + 96 a + 131\right)\cdot 211 + \left(4 a^{2} + 55 a + 76\right)\cdot 211^{2} + \left(82 a^{2} + 110 a + 109\right)\cdot 211^{3} + \left(51 a^{2} + 153 a + 68\right)\cdot 211^{4} + \left(6 a^{2} + 181 a + 8\right)\cdot 211^{5} + \left(165 a^{2} + 33 a + 9\right)\cdot 211^{6} + \left(22 a^{2} + 53 a + 171\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 165 a^{2} + 102 a + 9 + \left(200 a^{2} + 2 a + 127\right)\cdot 211 + \left(153 a^{2} + 2 a + 64\right)\cdot 211^{2} + \left(156 a^{2} + 39 a + 68\right)\cdot 211^{3} + \left(90 a^{2} + 90 a + 191\right)\cdot 211^{4} + \left(84 a^{2} + 47 a + 182\right)\cdot 211^{5} + \left(89 a^{2} + 203 a + 48\right)\cdot 211^{6} + \left(107 a^{2} + 184 a + 143\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 200 a^{2} + 162 a + 126 + \left(185 a^{2} + 176 a + 177\right)\cdot 211 + \left(134 a^{2} + 123 a + 179\right)\cdot 211^{2} + \left(174 a^{2} + 20 a + 21\right)\cdot 211^{3} + \left(182 a^{2} + 88 a + 103\right)\cdot 211^{4} + \left(83 a^{2} + 149 a + 41\right)\cdot 211^{5} + \left(204 a^{2} + 68 a + 202\right)\cdot 211^{6} + \left(86 a^{2} + 47 a + 115\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 206 a^{2} + 84 a + 134 + \left(159 a^{2} + 54 a + 72\right)\cdot 211 + \left(194 a^{2} + 89 a + 189\right)\cdot 211^{2} + \left(197 a^{2} + 23 a + 52\right)\cdot 211^{3} + \left(136 a^{2} + 93 a + 112\right)\cdot 211^{4} + \left(127 a^{2} + 49 a + 29\right)\cdot 211^{5} + \left(173 a^{2} + 190 a + 161\right)\cdot 211^{6} + \left(208 a^{2} + 35 a + 137\right)\cdot 211^{7} +O\left(211^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,3)(4,8,7)(5,6,9)$
$(2,3)(4,7)(5,6)$
$(1,7,5)(2,4,6)(3,8,9)$
$(4,7,8)(5,6,9)$
$(4,6)(5,7)(8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(2,3)(6,9)(7,8)$$0$
$9$$2$$(4,6)(5,7)(8,9)$$-2$
$9$$2$$(1,8)(2,4)(3,7)(5,6)$$0$
$2$$3$$(1,2,3)(4,8,7)(5,6,9)$$-3$
$6$$3$$(1,5,4)(2,6,8)(3,9,7)$$0$
$6$$3$$(1,3,2)(4,8,7)$$0$
$12$$3$$(1,7,5)(2,4,6)(3,8,9)$$0$
$18$$6$$(1,4,5)(2,7,6,3,8,9)$$0$
$18$$6$$(1,2,3)(4,9,7,6,8,5)$$1$
$18$$6$$(1,4,3,8,2,7)(5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.