Properties

Label 6.2e6_3e9_13e2.9t18.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{6} \cdot 3^{9} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$212891328= 2^{6} \cdot 3^{9} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{9} - x^{6} + 5 x^{3} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 28 a^{2} + 23 a + 29 + \left(26 a^{2} + 17 a + 17\right)\cdot 31 + \left(23 a^{2} + a + 5\right)\cdot 31^{2} + \left(19 a + 21\right)\cdot 31^{3} + \left(30 a^{2} + 27 a + 9\right)\cdot 31^{4} + \left(28 a^{2} + 28 a + 19\right)\cdot 31^{5} + \left(26 a^{2} + 16 a + 7\right)\cdot 31^{6} + \left(16 a^{2} + 27 a + 11\right)\cdot 31^{7} + \left(19 a^{2} + 17 a + 23\right)\cdot 31^{8} + \left(25 a^{2} + 11 a + 6\right)\cdot 31^{9} + \left(22 a^{2} + 3 a + 15\right)\cdot 31^{10} + \left(3 a^{2} + 18 a + 2\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 10 a^{2} + 22 a + 17 + \left(23 a^{2} + 30 a + 15\right)\cdot 31 + \left(25 a^{2} + 4 a + 27\right)\cdot 31^{2} + \left(10 a^{2} + 28 a + 27\right)\cdot 31^{3} + \left(21 a^{2} + 18 a + 3\right)\cdot 31^{4} + \left(8 a^{2} + 15 a + 16\right)\cdot 31^{5} + \left(6 a^{2} + 27 a + 14\right)\cdot 31^{6} + \left(22 a^{2} + 5 a + 4\right)\cdot 31^{7} + \left(22 a^{2} + 25 a + 15\right)\cdot 31^{8} + \left(9 a^{2} + 10 a + 6\right)\cdot 31^{9} + \left(9 a^{2} + 28 a + 6\right)\cdot 31^{10} + \left(14 a^{2} + 10 a + 30\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 17 + 23\cdot 31 + 28\cdot 31^{2} + 19\cdot 31^{3} + 10\cdot 31^{4} + 6\cdot 31^{5} + 24\cdot 31^{6} + 28\cdot 31^{7} + 26\cdot 31^{8} + 22\cdot 31^{9} + 29\cdot 31^{10} + 11\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 18 a^{2} + 17 a + 12 + \left(4 a^{2} + 5 a + 13\right)\cdot 31 + \left(17 a^{2} + 27 a + 11\right)\cdot 31^{2} + 28 a\cdot 31^{3} + \left(5 a^{2} + 27 a + 24\right)\cdot 31^{4} + \left(8 a^{2} + 29 a + 15\right)\cdot 31^{5} + \left(26 a^{2} + 25 a + 17\right)\cdot 31^{6} + \left(10 a^{2} + 19 a + 17\right)\cdot 31^{7} + \left(24 a^{2} + 23 a + 26\right)\cdot 31^{8} + \left(28 a^{2} + 19 a + 8\right)\cdot 31^{9} + \left(5 a^{2} + 17 a + 14\right)\cdot 31^{10} + \left(29 a^{2} + 26 a + 19\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 23 a + 22 + \left(30 a^{2} + 3 a + 9\right)\cdot 31 + \left(22 a^{2} + 4 a + 15\right)\cdot 31^{2} + \left(19 a^{2} + 26 a + 23\right)\cdot 31^{3} + \left(6 a^{2} + a + 14\right)\cdot 31^{4} + \left(23 a^{2} + 29 a + 15\right)\cdot 31^{5} + \left(a^{2} + 28 a + 11\right)\cdot 31^{6} + \left(2 a^{2} + 5 a + 1\right)\cdot 31^{7} + \left(18 a^{2} + 6 a + 12\right)\cdot 31^{8} + \left(10 a^{2} + 25 a + 17\right)\cdot 31^{9} + \left(14 a^{2} + 4 a + 9\right)\cdot 31^{10} + \left(20 a^{2} + 3 a + 3\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 22 + 23\cdot 31 + 19\cdot 31^{2} + 16\cdot 31^{3} + 22\cdot 31^{4} + 16\cdot 31^{5} + 16\cdot 31^{6} + 8\cdot 31^{7} + 15\cdot 31^{8} + 7\cdot 31^{9} + 22\cdot 31^{10} + 18\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 16 a^{2} + 22 a + 21 + \left(30 a^{2} + 7 a + 30\right)\cdot 31 + \left(20 a^{2} + 2 a + 13\right)\cdot 31^{2} + \left(29 a^{2} + 14 a + 9\right)\cdot 31^{3} + \left(26 a^{2} + 6 a + 28\right)\cdot 31^{4} + \left(24 a^{2} + 3 a + 26\right)\cdot 31^{5} + \left(8 a^{2} + 19 a + 5\right)\cdot 31^{6} + \left(3 a^{2} + 14 a + 2\right)\cdot 31^{7} + \left(18 a^{2} + 20 a + 12\right)\cdot 31^{8} + \left(7 a^{2} + 30 a + 15\right)\cdot 31^{9} + \left(2 a^{2} + 9 a + 1\right)\cdot 31^{10} + \left(29 a^{2} + 17 a + 9\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 19 a^{2} + 17 a + 23 + \left(8 a^{2} + 27 a + 5\right)\cdot 31 + \left(13 a^{2} + 21 a + 19\right)\cdot 31^{2} + \left(7 a + 10\right)\cdot 31^{3} + \left(3 a^{2} + 10 a + 12\right)\cdot 31^{4} + \left(30 a^{2} + 17 a + 30\right)\cdot 31^{5} + \left(22 a^{2} + 5 a + 4\right)\cdot 31^{6} + \left(6 a^{2} + 19 a + 25\right)\cdot 31^{7} + \left(21 a^{2} + 30 a + 3\right)\cdot 31^{8} + \left(10 a^{2} + 25 a + 7\right)\cdot 31^{9} + \left(7 a^{2} + 28 a + 15\right)\cdot 31^{10} + \left(27 a^{2} + 16 a + 28\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 23 + 14\cdot 31 + 13\cdot 31^{2} + 25\cdot 31^{3} + 28\cdot 31^{4} + 7\cdot 31^{5} + 21\cdot 31^{6} + 24\cdot 31^{7} + 19\cdot 31^{8} + 10\cdot 31^{10} +O\left(31^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,7)(3,9,6)$
$(1,4)(3,6)(5,8)$
$(1,5,3)(2,9,7)(4,8,6)$
$(2,8,5)(3,6,9)$
$(2,9)(3,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,4)(3,6)(5,8)$ $0$
$9$ $2$ $(2,9)(3,5)(6,8)$ $2$
$9$ $2$ $(1,4)(2,9)(3,8)(5,6)$ $0$
$2$ $3$ $(1,7,4)(2,8,5)(3,9,6)$ $-3$
$6$ $3$ $(1,5,3)(2,9,7)(4,8,6)$ $0$
$6$ $3$ $(1,4,7)(3,9,6)$ $0$
$12$ $3$ $(1,2,3)(4,5,6)(7,8,9)$ $0$
$18$ $6$ $(1,8,3,4,5,6)(2,9,7)$ $0$
$18$ $6$ $(1,4,7)(2,6,8,3,5,9)$ $-1$
$18$ $6$ $(1,7)(2,6,5,3,8,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.