Properties

Label 6.2e6_3e8_19e3.9t10.1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 2^{6} \cdot 3^{8} \cdot 19^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$2880121536= 2^{6} \cdot 3^{8} \cdot 19^{3} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{7} - 6 x^{6} + 6 x^{5} - 8 x^{3} - 18 x^{2} + 10 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 23 + 14\cdot 23^{2} + 15\cdot 23^{3} + 10\cdot 23^{4} + 20\cdot 23^{5} + 12\cdot 23^{6} + 12\cdot 23^{7} + 19\cdot 23^{8} + 3\cdot 23^{9} + 4\cdot 23^{10} + 19\cdot 23^{11} + 17\cdot 23^{12} + 13\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 5 + 19\cdot 23 + 23^{2} + 21\cdot 23^{3} + 2\cdot 23^{4} + 18\cdot 23^{5} + 9\cdot 23^{6} + 10\cdot 23^{7} + 13\cdot 23^{8} + 19\cdot 23^{9} + 17\cdot 23^{10} + 12\cdot 23^{11} + 10\cdot 23^{12} +O\left(23^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 10 a + 18 + \left(22 a + 7\right)\cdot 23 + \left(18 a^{2} + a + 16\right)\cdot 23^{2} + \left(17 a^{2} + 20 a\right)\cdot 23^{3} + \left(17 a^{2} + 5 a + 16\right)\cdot 23^{4} + \left(a^{2} + 15 a + 17\right)\cdot 23^{5} + \left(13 a^{2} + 8 a + 9\right)\cdot 23^{6} + \left(15 a^{2} + 10 a + 5\right)\cdot 23^{7} + \left(3 a^{2} + 10 a + 20\right)\cdot 23^{8} + \left(21 a^{2} + 10 a + 12\right)\cdot 23^{9} + \left(6 a^{2} + 9 a + 1\right)\cdot 23^{10} + \left(8 a^{2} + 14 a + 11\right)\cdot 23^{11} + \left(10 a^{2} + 3 a + 21\right)\cdot 23^{12} + \left(17 a^{2} + 18 a + 7\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 2 a + 21 + \left(15 a^{2} + 14 a + 12\right)\cdot 23 + \left(12 a^{2} + a + 1\right)\cdot 23^{2} + \left(21 a^{2} + 12 a + 21\right)\cdot 23^{3} + \left(5 a^{2} + 13 a + 7\right)\cdot 23^{4} + \left(16 a^{2} + 6 a + 6\right)\cdot 23^{5} + \left(16 a^{2} + 16 a + 22\right)\cdot 23^{6} + \left(21 a^{2} + 9 a + 5\right)\cdot 23^{7} + \left(2 a^{2} + a + 19\right)\cdot 23^{8} + \left(5 a^{2} + 22 a + 6\right)\cdot 23^{9} + \left(2 a^{2} + 9 a + 18\right)\cdot 23^{10} + \left(16 a^{2} + 2 a + 13\right)\cdot 23^{11} + \left(3 a^{2} + 18 a + 12\right)\cdot 23^{12} + \left(3 a^{2} + 8 a + 19\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + a + 8 + \left(4 a^{2} + 16 a + 13\right)\cdot 23 + \left(18 a^{2} + 14 a + 16\right)\cdot 23^{2} + \left(19 a^{2} + 7 a + 18\right)\cdot 23^{3} + \left(a^{2} + 7 a + 17\right)\cdot 23^{4} + \left(19 a^{2} + 19 a + 17\right)\cdot 23^{5} + \left(22 a^{2} + 16 a + 22\right)\cdot 23^{6} + \left(19 a^{2} + 16 a + 18\right)\cdot 23^{7} + \left(4 a^{2} + 2 a + 21\right)\cdot 23^{8} + \left(7 a^{2} + 17 a + 1\right)\cdot 23^{9} + \left(a^{2} + 17\right)\cdot 23^{10} + \left(18 a^{2} + 18 a + 8\right)\cdot 23^{11} + \left(10 a^{2} + 16 a + 14\right)\cdot 23^{12} + \left(13 a^{2} + 15 a + 2\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 17 + 7\cdot 23^{2} + 9\cdot 23^{3} + 9\cdot 23^{4} + 7\cdot 23^{5} + 13\cdot 23^{8} + 22\cdot 23^{9} + 14\cdot 23^{11} + 17\cdot 23^{12} + 8\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 8 a + 8 + \left(20 a^{2} + 2 a + 19\right)\cdot 23 + \left(8 a + 8\right)\cdot 23^{2} + \left(7 a^{2} + 7 a + 9\right)\cdot 23^{3} + \left(18 a^{2} + 20 a + 1\right)\cdot 23^{4} + \left(4 a^{2} + 7 a + 14\right)\cdot 23^{5} + \left(21 a^{2} + 8 a + 20\right)\cdot 23^{6} + \left(20 a^{2} + 20 a + 4\right)\cdot 23^{7} + \left(21 a^{2} + 2 a + 6\right)\cdot 23^{8} + \left(12 a^{2} + 3 a + 17\right)\cdot 23^{9} + \left(7 a^{2} + 2 a + 17\right)\cdot 23^{10} + \left(a^{2} + 19 a + 1\right)\cdot 23^{11} + \left(5 a^{2} + 14 a + 22\right)\cdot 23^{12} + \left(16 a^{2} + 20 a + 13\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 12 a + 20 + \left(18 a^{2} + 7 a + 1\right)\cdot 23 + \left(9 a^{2} + 6 a + 13\right)\cdot 23^{2} + \left(8 a^{2} + 18 a + 3\right)\cdot 23^{3} + \left(3 a^{2} + 9 a + 12\right)\cdot 23^{4} + \left(2 a^{2} + 11 a + 10\right)\cdot 23^{5} + \left(10 a^{2} + 20 a + 13\right)\cdot 23^{6} + \left(10 a^{2} + 18 a + 21\right)\cdot 23^{7} + \left(14 a^{2} + 9 a + 3\right)\cdot 23^{8} + \left(17 a^{2} + 18 a + 8\right)\cdot 23^{9} + \left(14 a^{2} + 12 a + 4\right)\cdot 23^{10} + \left(19 a^{2} + 13 a + 3\right)\cdot 23^{11} + \left(a^{2} + 2 a + 10\right)\cdot 23^{12} + \left(15 a^{2} + 12 a + 12\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 7 a^{2} + 13 a + 17 + \left(10 a^{2} + 6 a + 13\right)\cdot 23 + \left(9 a^{2} + 13 a + 12\right)\cdot 23^{2} + \left(17 a^{2} + 3 a + 15\right)\cdot 23^{3} + \left(21 a^{2} + 12 a + 13\right)\cdot 23^{4} + \left(a^{2} + 8 a + 2\right)\cdot 23^{5} + \left(8 a^{2} + 21 a + 3\right)\cdot 23^{6} + \left(3 a^{2} + 15 a + 12\right)\cdot 23^{7} + \left(21 a^{2} + 18 a + 20\right)\cdot 23^{8} + \left(4 a^{2} + 20 a + 21\right)\cdot 23^{9} + \left(13 a^{2} + 10 a + 9\right)\cdot 23^{10} + \left(5 a^{2} + a + 7\right)\cdot 23^{11} + \left(14 a^{2} + 13 a + 11\right)\cdot 23^{12} + \left(3 a^{2} + 16 a + 12\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(3,4)(5,7)(8,9)$
$(1,7,8,6,9,5,2,4,3)$
$(1,2,6)(3,8,5)$
$(3,5,8)(4,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,8)(2,5)(3,6)(7,9)$ $0$
$2$ $3$ $(1,6,2)(3,8,5)(4,7,9)$ $-3$
$3$ $3$ $(1,2,6)(3,8,5)$ $0$
$3$ $3$ $(1,6,2)(3,5,8)$ $0$
$9$ $6$ $(1,5,6,8,2,3)(7,9)$ $0$
$9$ $6$ $(1,3,2,8,6,5)(7,9)$ $0$
$6$ $9$ $(1,7,8,6,9,5,2,4,3)$ $0$
$6$ $9$ $(1,8,9,2,3,7,6,5,4)$ $0$
$6$ $9$ $(1,4,8,6,7,5,2,9,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.