Properties

Label 6.2e6_3e7_5e5.8t34.1c1
Dimension 6
Group $V_4^2:S_3$
Conductor $ 2^{6} \cdot 3^{7} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$V_4^2:S_3$
Conductor:$437400000= 2^{6} \cdot 3^{7} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - 7 x^{5} + 4 x^{4} - 4 x^{3} + 16 x^{2} - 28 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $V_4^2:S_3$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 21.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + 7 a + 6 + \left(11 a^{2} + 9 a + 4\right)\cdot 17 + \left(12 a^{2} + 9 a + 14\right)\cdot 17^{2} + \left(14 a^{2} + 16 a + 6\right)\cdot 17^{3} + \left(14 a^{2} + 8 a + 16\right)\cdot 17^{4} + \left(7 a^{2} + 9 a + 12\right)\cdot 17^{5} + \left(16 a^{2} + 5 a + 1\right)\cdot 17^{6} + \left(11 a^{2} + 9 a + 14\right)\cdot 17^{7} + \left(13 a^{2} + a + 10\right)\cdot 17^{8} + \left(10 a + 11\right)\cdot 17^{9} + \left(8 a^{2} + 14 a + 2\right)\cdot 17^{10} + \left(15 a^{2} + 6 a + 11\right)\cdot 17^{11} + \left(a + 5\right)\cdot 17^{12} + 5 a^{2}17^{13} + \left(14 a^{2} + 10 a + 16\right)\cdot 17^{14} + \left(12 a^{2} + a + 13\right)\cdot 17^{15} + \left(13 a^{2} + 8 a + 9\right)\cdot 17^{16} + \left(a + 7\right)\cdot 17^{17} + \left(16 a^{2} + 7 a + 4\right)\cdot 17^{18} + \left(3 a^{2} + 6 a + 12\right)\cdot 17^{19} + \left(9 a^{2} + 13 a + 12\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{2} + 5 a + 13 + \left(3 a^{2} + 10 a\right)\cdot 17 + \left(13 a^{2} + a + 8\right)\cdot 17^{2} + \left(3 a^{2} + 15 a + 10\right)\cdot 17^{3} + \left(4 a + 15\right)\cdot 17^{4} + \left(14 a^{2} + 15 a + 3\right)\cdot 17^{5} + \left(12 a^{2} + 8 a\right)\cdot 17^{6} + \left(7 a^{2} + 12 a + 11\right)\cdot 17^{7} + \left(7 a^{2} + 15 a + 1\right)\cdot 17^{8} + \left(15 a^{2} + 6 a + 5\right)\cdot 17^{9} + \left(5 a^{2} + 7 a + 13\right)\cdot 17^{10} + \left(8 a^{2} + 4 a + 16\right)\cdot 17^{11} + \left(11 a^{2} + 10 a + 12\right)\cdot 17^{12} + \left(13 a^{2} + 8 a + 2\right)\cdot 17^{13} + \left(14 a^{2} + 10 a + 15\right)\cdot 17^{14} + \left(2 a^{2} + 2 a + 12\right)\cdot 17^{15} + \left(10 a^{2} + 8 a + 10\right)\cdot 17^{16} + \left(14 a^{2} + 2 a + 8\right)\cdot 17^{17} + \left(12 a^{2} + 3 a\right)\cdot 17^{18} + \left(7 a^{2} + 11 a + 13\right)\cdot 17^{19} + \left(14 a^{2} + 5 a\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 3 }$ $=$ $ 11 + 10\cdot 17 + 3\cdot 17^{2} + 4\cdot 17^{3} + 3\cdot 17^{4} + 14\cdot 17^{5} + 11\cdot 17^{6} + 6\cdot 17^{7} + 11\cdot 17^{8} + 2\cdot 17^{9} + 4\cdot 17^{11} + 13\cdot 17^{12} + 8\cdot 17^{13} + 7\cdot 17^{14} + 6\cdot 17^{15} + 9\cdot 17^{16} + 9\cdot 17^{17} + 10\cdot 17^{18} + 7\cdot 17^{19} + 6\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 4 }$ $=$ $ 12 a^{2} + 13 a + 5 + \left(a^{2} + 16 a + 9\right)\cdot 17 + \left(13 a + 11\right)\cdot 17^{2} + \left(10 a^{2} + 9 a + 3\right)\cdot 17^{3} + \left(15 a^{2} + 5 a + 11\right)\cdot 17^{4} + \left(3 a + 2\right)\cdot 17^{5} + \left(16 a^{2} + 4 a + 7\right)\cdot 17^{6} + \left(2 a + 12\right)\cdot 17^{7} + \left(14 a^{2} + 4 a + 16\right)\cdot 17^{8} + \left(11 a^{2} + 6 a + 1\right)\cdot 17^{9} + \left(7 a^{2} + 2 a + 8\right)\cdot 17^{10} + \left(8 a^{2} + 6 a + 6\right)\cdot 17^{11} + \left(13 a^{2} + 15 a + 8\right)\cdot 17^{12} + \left(10 a^{2} + 11 a + 15\right)\cdot 17^{13} + \left(12 a^{2} + 11 a + 14\right)\cdot 17^{14} + \left(12 a^{2} + 10 a + 13\right)\cdot 17^{15} + \left(7 a^{2} + 4 a + 5\right)\cdot 17^{16} + \left(13 a^{2} + 3 a + 10\right)\cdot 17^{17} + \left(10 a^{2} + 3 a + 6\right)\cdot 17^{18} + \left(11 a^{2} + 5 a\right)\cdot 17^{19} + \left(16 a^{2} + 12 a + 12\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 14 + \left(4 a^{2} + 7 a + 10\right)\cdot 17 + \left(4 a^{2} + 10 a + 8\right)\cdot 17^{2} + \left(9 a^{2} + 7 a + 14\right)\cdot 17^{3} + \left(3 a^{2} + 2 a + 8\right)\cdot 17^{4} + \left(8 a^{2} + 4 a + 7\right)\cdot 17^{5} + \left(a^{2} + 7 a + 14\right)\cdot 17^{6} + \left(4 a^{2} + 5 a + 8\right)\cdot 17^{7} + \left(6 a^{2} + 11 a + 11\right)\cdot 17^{8} + \left(4 a^{2} + 2\right)\cdot 17^{9} + \left(a^{2} + 15\right)\cdot 17^{10} + \left(10 a^{2} + 4 a + 1\right)\cdot 17^{11} + \left(2 a^{2} + 1\right)\cdot 17^{12} + \left(a^{2} + 5 a + 9\right)\cdot 17^{13} + \left(7 a^{2} + 12 a + 5\right)\cdot 17^{14} + \left(8 a^{2} + 4 a + 5\right)\cdot 17^{15} + \left(12 a^{2} + 4 a + 3\right)\cdot 17^{16} + \left(2 a^{2} + 12 a + 3\right)\cdot 17^{17} + \left(7 a^{2} + 6 a + 4\right)\cdot 17^{18} + \left(a^{2} + 5 a + 16\right)\cdot 17^{19} + \left(8 a^{2} + 8 a + 11\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 12 a + 1 + \left(2 a^{2} + 5 a\right)\cdot 17 + \left(11 a^{2} + 7 a + 1\right)\cdot 17^{2} + \left(5 a^{2} + a + 6\right)\cdot 17^{3} + \left(12 a^{2} + 7 a + 12\right)\cdot 17^{4} + \left(4 a^{2} + 2 a + 14\right)\cdot 17^{5} + \left(11 a^{2} + 3 a + 4\right)\cdot 17^{6} + \left(12 a^{2} + 6 a + 14\right)\cdot 17^{7} + \left(10 a^{2} + 16 a + 3\right)\cdot 17^{8} + \left(11 a^{2} + 10 a + 8\right)\cdot 17^{9} + \left(3 a^{2} + 14 a\right)\cdot 17^{10} + \left(15 a^{2} + 5 a + 10\right)\cdot 17^{11} + \left(8 a^{2} + 11 a + 5\right)\cdot 17^{12} + \left(5 a^{2} + 10 a + 14\right)\cdot 17^{13} + \left(12 a^{2} + 12 a + 7\right)\cdot 17^{14} + \left(3 a^{2} + 7 a + 13\right)\cdot 17^{15} + \left(11 a^{2} + a + 5\right)\cdot 17^{16} + \left(9 a^{2} + 3 a + 5\right)\cdot 17^{17} + \left(7 a^{2} + 16 a + 8\right)\cdot 17^{18} + \left(13 a^{2} + 15 a + 5\right)\cdot 17^{19} + \left(8 a^{2} + 8\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 7 }$ $=$ $ 8 a^{2} + 15 + \left(11 a^{2} + a + 11\right)\cdot 17 + \left(9 a^{2} + 8 a + 5\right)\cdot 17^{2} + \left(7 a^{2} + 7\right)\cdot 17^{3} + \left(4 a^{2} + 5 a + 1\right)\cdot 17^{4} + \left(15 a^{2} + 16 a + 16\right)\cdot 17^{5} + \left(9 a^{2} + 4 a + 3\right)\cdot 17^{6} + \left(13 a^{2} + 15 a + 9\right)\cdot 17^{7} + \left(15 a^{2} + a + 1\right)\cdot 17^{8} + \left(6 a^{2} + 16 a + 5\right)\cdot 17^{9} + \left(7 a^{2} + 11 a + 14\right)\cdot 17^{10} + \left(10 a^{2} + 6 a + 6\right)\cdot 17^{11} + \left(13 a^{2} + 12 a + 14\right)\cdot 17^{12} + \left(14 a^{2} + 14 a + 14\right)\cdot 17^{13} + \left(6 a^{2} + 10 a + 9\right)\cdot 17^{14} + \left(10 a^{2} + 6 a + 6\right)\cdot 17^{15} + \left(12 a^{2} + 7 a + 12\right)\cdot 17^{16} + \left(9 a^{2} + 11 a + 16\right)\cdot 17^{17} + \left(13 a^{2} + 14 a\right)\cdot 17^{18} + \left(12 a^{2} + 6 a + 5\right)\cdot 17^{19} + \left(10 a^{2} + 10 a + 15\right)\cdot 17^{20} +O\left(17^{ 21 }\right)$
$r_{ 8 }$ $=$ $ 4 + 3\cdot 17 + 15\cdot 17^{2} + 14\cdot 17^{3} + 15\cdot 17^{4} + 12\cdot 17^{5} + 6\cdot 17^{6} + 8\cdot 17^{7} + 10\cdot 17^{8} + 13\cdot 17^{9} + 13\cdot 17^{10} + 10\cdot 17^{11} + 6\cdot 17^{12} + 2\cdot 17^{13} + 8\cdot 17^{14} + 12\cdot 17^{15} + 10\cdot 17^{16} + 6\cdot 17^{17} + 15\cdot 17^{18} + 7\cdot 17^{19} +O\left(17^{ 21 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5)(3,6,7)$
$(1,7)(2,4)(3,5)(6,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,5)(4,8)$
$(1,8)(4,5)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$6$
$3$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$3$$2$$(1,8)(2,3)(4,5)(6,7)$$-2$
$3$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$6$$2$$(1,8)(4,5)$$2$
$12$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$32$$3$$(1,5,4)(3,6,7)$$0$
$12$$4$$(1,7,8,6)(2,5,3,4)$$0$
$12$$4$$(1,6,5,2)(3,8,7,4)$$0$
$12$$4$$(1,7,4,2)(3,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.