Properties

Label 6.2e6_3e6_29e2.9t18.2c1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{6} \cdot 3^{6} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$39237696= 2^{6} \cdot 3^{6} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 4 x^{7} + x^{6} - 9 x^{5} + 9 x^{4} - 3 x^{3} - 6 x^{2} + 6 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 11 + 24\cdot 41^{2} + 6\cdot 41^{3} + 39\cdot 41^{5} + 14\cdot 41^{6} + 14\cdot 41^{7} + 32\cdot 41^{8} + 39\cdot 41^{9} + 18\cdot 41^{10} + 30\cdot 41^{11} +O\left(41^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 13 a + 4 + \left(14 a^{2} + 4 a + 18\right)\cdot 41 + \left(28 a^{2} + 12 a + 20\right)\cdot 41^{2} + \left(9 a^{2} + 39 a + 24\right)\cdot 41^{3} + \left(3 a^{2} + 35 a + 37\right)\cdot 41^{4} + \left(34 a^{2} + 34 a + 35\right)\cdot 41^{5} + \left(10 a^{2} + 8 a + 3\right)\cdot 41^{6} + \left(11 a^{2} + 17 a + 30\right)\cdot 41^{7} + \left(40 a^{2} + 40 a + 12\right)\cdot 41^{8} + \left(9 a^{2} + 3 a + 4\right)\cdot 41^{9} + \left(20 a^{2} + 27 a + 36\right)\cdot 41^{10} + \left(14 a^{2} + 8 a + 21\right)\cdot 41^{11} + \left(39 a^{2} + 35 a + 5\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 19 + 14\cdot 41 + 4\cdot 41^{2} + 26\cdot 41^{3} + 27\cdot 41^{4} + 11\cdot 41^{5} + 9\cdot 41^{6} + 40\cdot 41^{7} + 26\cdot 41^{8} + 11\cdot 41^{9} + 20\cdot 41^{10} + 23\cdot 41^{11} + 11\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 16 a^{2} + 5 a + 28 + \left(3 a^{2} + 33 a + 2\right)\cdot 41 + \left(36 a^{2} + 19 a + 1\right)\cdot 41^{2} + \left(14 a^{2} + 38 a + 31\right)\cdot 41^{3} + \left(18 a^{2} + 13 a + 8\right)\cdot 41^{4} + \left(23 a^{2} + 11 a + 21\right)\cdot 41^{5} + \left(22 a^{2} + 22 a + 3\right)\cdot 41^{6} + \left(35 a^{2} + 20 a + 6\right)\cdot 41^{7} + \left(7 a^{2} + 20 a + 1\right)\cdot 41^{8} + \left(3 a^{2} + 2 a + 8\right)\cdot 41^{9} + \left(29 a^{2} + 34 a + 39\right)\cdot 41^{10} + \left(23 a^{2} + 17 a + 7\right)\cdot 41^{11} + \left(23 a^{2} + 9 a + 9\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 15 a^{2} + 39 a + 23 + \left(16 a^{2} + 22 a + 19\right)\cdot 41 + \left(34 a^{2} + 17 a + 24\right)\cdot 41^{2} + \left(36 a^{2} + 25 a + 1\right)\cdot 41^{3} + \left(28 a^{2} + 32 a\right)\cdot 41^{4} + \left(2 a^{2} + 21 a + 15\right)\cdot 41^{5} + \left(13 a^{2} + 3 a + 5\right)\cdot 41^{6} + \left(33 a^{2} + 11 a + 31\right)\cdot 41^{7} + \left(17 a^{2} + 4 a + 38\right)\cdot 41^{8} + \left(6 a^{2} + 10 a + 1\right)\cdot 41^{9} + \left(23 a^{2} + 28 a + 38\right)\cdot 41^{10} + \left(6 a^{2} + 17 a + 2\right)\cdot 41^{11} + \left(32 a^{2} + 24 a + 28\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 32 a^{2} + 22 a + 25 + \left(17 a^{2} + 20 a + 39\right)\cdot 41 + \left(33 a^{2} + 30 a + 12\right)\cdot 41^{2} + \left(11 a^{2} + 19 a + 15\right)\cdot 41^{3} + \left(18 a^{2} + 25 a + 22\right)\cdot 41^{4} + \left(34 a^{2} + 9 a + 28\right)\cdot 41^{5} + \left(16 a^{2} + 35 a + 40\right)\cdot 41^{6} + \left(22 a^{2} + 23 a + 10\right)\cdot 41^{7} + \left(3 a^{2} + 9 a + 39\right)\cdot 41^{8} + \left(9 a^{2} + 25 a + 11\right)\cdot 41^{9} + \left(34 a^{2} + 11 a + 15\right)\cdot 41^{10} + \left(29 a^{2} + 16 a + 39\right)\cdot 41^{11} + \left(23 a^{2} + 12 a + 22\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 5 + 40\cdot 41 + 35\cdot 41^{2} + 13\cdot 41^{3} + 40\cdot 41^{4} + 15\cdot 41^{5} + 20\cdot 41^{6} + 12\cdot 41^{7} + 36\cdot 41^{8} + 19\cdot 41^{9} + 38\cdot 41^{10} + 14\cdot 41^{11} + 28\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 34 a^{2} + 14 a + 40 + \left(19 a^{2} + 28 a + 40\right)\cdot 41 + \left(12 a^{2} + 31 a + 39\right)\cdot 41^{2} + \left(14 a^{2} + 23 a + 16\right)\cdot 41^{3} + \left(4 a^{2} + a + 40\right)\cdot 41^{4} + \left(24 a^{2} + 20 a + 7\right)\cdot 41^{5} + \left(a^{2} + 24 a + 3\right)\cdot 41^{6} + \left(24 a^{2} + 37 a + 12\right)\cdot 41^{7} + \left(29 a^{2} + 10 a + 29\right)\cdot 41^{8} + \left(28 a^{2} + 13 a + 38\right)\cdot 41^{9} + \left(18 a^{2} + 36 a + 4\right)\cdot 41^{10} + \left(28 a^{2} + 6 a + 11\right)\cdot 41^{11} + \left(34 a^{2} + 19 a + 30\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 19 a^{2} + 30 a + 12 + \left(10 a^{2} + 13 a + 29\right)\cdot 41 + \left(19 a^{2} + 11 a\right)\cdot 41^{2} + \left(35 a^{2} + 17 a + 28\right)\cdot 41^{3} + \left(8 a^{2} + 13 a + 27\right)\cdot 41^{4} + \left(4 a^{2} + 25 a + 29\right)\cdot 41^{5} + \left(17 a^{2} + 28 a + 21\right)\cdot 41^{6} + \left(37 a^{2} + 12 a + 6\right)\cdot 41^{7} + \left(23 a^{2} + 37 a + 29\right)\cdot 41^{8} + \left(24 a^{2} + 26 a + 27\right)\cdot 41^{9} + \left(38 a^{2} + 26 a + 34\right)\cdot 41^{10} + \left(19 a^{2} + 14 a + 11\right)\cdot 41^{11} + \left(10 a^{2} + 22 a + 27\right)\cdot 41^{12} +O\left(41^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,7)(4,6)(5,9)$
$(2,9,5)(4,6,8)$
$(2,4)(5,6)(8,9)$
$(1,2,4)(3,5,6)(7,9,8)$
$(1,7,3)(2,9,5)(4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,3)(2,9)(4,6)$$0$
$9$$2$$(2,4)(5,6)(8,9)$$2$
$9$$2$$(1,8)(3,6)(4,7)(5,9)$$0$
$2$$3$$(1,7,3)(2,9,5)(4,8,6)$$-3$
$6$$3$$(1,9,4)(2,6,3)(5,8,7)$$0$
$6$$3$$(1,7,3)(4,6,8)$$0$
$12$$3$$(1,2,4)(3,5,6)(7,9,8)$$0$
$18$$6$$(1,6,9,3,4,2)(5,7,8)$$0$
$18$$6$$(1,7,3)(2,8,5,4,9,6)$$-1$
$18$$6$$(1,6,7,8,3,4)(5,9)$$0$
The blue line marks the conjugacy class containing complex conjugation.