Properties

Label 6.2e6_3e3_7e6.9t10.1c1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 2^{6} \cdot 3^{3} \cdot 7^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$203297472= 2^{6} \cdot 3^{3} \cdot 7^{6} $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 2 x^{7} - 4 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 23\cdot 61 + 7\cdot 61^{2} + 31\cdot 61^{3} + 61^{4} + 59\cdot 61^{5} + 58\cdot 61^{6} + 51\cdot 61^{7} + 42\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 41 a^{2} + 19 a + 60 + \left(15 a^{2} + 48 a + 38\right)\cdot 61 + \left(40 a^{2} + 12 a + 16\right)\cdot 61^{2} + \left(10 a^{2} + 22 a + 52\right)\cdot 61^{3} + \left(27 a^{2} + 27 a + 5\right)\cdot 61^{4} + \left(44 a^{2} + 12 a + 53\right)\cdot 61^{5} + \left(33 a^{2} + 37 a + 35\right)\cdot 61^{6} + \left(14 a^{2} + 43 a + 17\right)\cdot 61^{7} + \left(19 a^{2} + 36 a + 3\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 6 + 7\cdot 61 + 30\cdot 61^{2} + 47\cdot 61^{3} + 40\cdot 61^{4} + 47\cdot 61^{5} + 4\cdot 61^{6} + 25\cdot 61^{7} + 53\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 19 a^{2} + 4 a + 59 + \left(43 a^{2} + 29 a + 45\right)\cdot 61 + \left(30 a^{2} + 18 a + 12\right)\cdot 61^{2} + \left(24 a^{2} + 24 a + 15\right)\cdot 61^{3} + \left(20 a^{2} + 44 a + 35\right)\cdot 61^{4} + \left(20 a^{2} + 33 a + 1\right)\cdot 61^{5} + \left(57 a^{2} + 33 a + 24\right)\cdot 61^{6} + \left(25 a^{2} + 45 a + 50\right)\cdot 61^{7} + \left(25 a^{2} + 50 a + 11\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 38 a^{2} + 51 a + 32 + \left(60 a^{2} + 21 a + 33\right)\cdot 61 + \left(6 a^{2} + 19 a + 40\right)\cdot 61^{2} + \left(6 a^{2} + 8 a + 14\right)\cdot 61^{3} + \left(49 a^{2} + a + 23\right)\cdot 61^{4} + \left(11 a^{2} + 45 a + 56\right)\cdot 61^{5} + \left(12 a^{2} + 19 a + 36\right)\cdot 61^{6} + \left(59 a^{2} + 25 a + 2\right)\cdot 61^{7} + \left(15 a^{2} + 45 a + 22\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 38 a + 36 + \left(2 a^{2} + 44 a + 56\right)\cdot 61 + \left(51 a^{2} + 29 a + 5\right)\cdot 61^{2} + \left(25 a^{2} + 14 a + 1\right)\cdot 61^{3} + \left(13 a^{2} + 50 a + 23\right)\cdot 61^{4} + \left(57 a^{2} + 14 a + 31\right)\cdot 61^{5} + \left(30 a^{2} + 51 a + 2\right)\cdot 61^{6} + \left(20 a^{2} + 32 a + 25\right)\cdot 61^{7} + \left(16 a^{2} + 34 a + 30\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 35 a^{2} + 12 a + 18 + \left(56 a^{2} + 49 a + 55\right)\cdot 61 + \left(49 a^{2} + 55 a + 57\right)\cdot 61^{2} + \left(4 a^{2} + 32 a + 28\right)\cdot 61^{3} + \left(45 a^{2} + 6 a + 4\right)\cdot 61^{4} + \left(20 a^{2} + 45 a + 37\right)\cdot 61^{5} + \left(12 a^{2} + 19 a + 37\right)\cdot 61^{6} + \left(28 a^{2} + 41 a + 20\right)\cdot 61^{7} + \left(a^{2} + 17 a + 15\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 49 a^{2} + 59 a + 2 + \left(4 a^{2} + 50 a + 17\right)\cdot 61 + \left(4 a^{2} + 46 a + 47\right)\cdot 61^{2} + \left(50 a^{2} + 19 a + 36\right)\cdot 61^{3} + \left(27 a^{2} + 53 a + 25\right)\cdot 61^{4} + \left(28 a^{2} + 31 a + 32\right)\cdot 61^{5} + \left(36 a^{2} + 21 a + 48\right)\cdot 61^{6} + \left(34 a^{2} + 55 a + 9\right)\cdot 61^{7} + \left(43 a^{2} + 58 a + 49\right)\cdot 61^{8} +O\left(61^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 28 + 27\cdot 61 + 25\cdot 61^{2} + 16\cdot 61^{3} + 23\cdot 61^{4} + 47\cdot 61^{5} + 55\cdot 61^{6} + 40\cdot 61^{7} + 15\cdot 61^{8} +O\left(61^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6,4)(5,8,7)$
$(1,9,3)(2,6,4)$
$(1,7,6,3,8,4,9,5,2)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,2)(3,4)(6,9)(7,8)$$0$
$2$$3$$(1,3,9)(2,6,4)(5,7,8)$$-3$
$3$$3$$(1,9,3)(2,6,4)$$0$
$3$$3$$(1,3,9)(2,4,6)$$0$
$9$$6$$(1,4,9,2,3,6)(7,8)$$0$
$9$$6$$(1,6,3,2,9,4)(7,8)$$0$
$6$$9$$(1,7,6,3,8,4,9,5,2)$$0$
$6$$9$$(1,6,8,9,2,7,3,4,5)$$0$
$6$$9$$(1,8,6,3,5,4,9,7,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.