Properties

Label 6.2e6_19e4_29e3.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 2^{6} \cdot 19^{4} \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$203417527616= 2^{6} \cdot 19^{4} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 10 x^{7} - 12 x^{6} + 13 x^{5} - 24 x^{4} - 51 x^{3} - 76 x^{2} - 55 x - 74 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{3} + 3 x + 124 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 26\cdot 127 + 65\cdot 127^{2} + 10\cdot 127^{3} + 41\cdot 127^{4} + 23\cdot 127^{5} + 71\cdot 127^{6} + 106\cdot 127^{7} + 110\cdot 127^{8} + 10\cdot 127^{9} + 37\cdot 127^{10} + 34\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 58 + 90\cdot 127 + 72\cdot 127^{2} + 62\cdot 127^{3} + 102\cdot 127^{4} + 5\cdot 127^{5} + 99\cdot 127^{6} + 80\cdot 127^{7} + 49\cdot 127^{8} + 73\cdot 127^{9} + 118\cdot 127^{10} + 25\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 115 + 93\cdot 127 + 5\cdot 127^{2} + 76\cdot 127^{3} + 95\cdot 127^{4} + 92\cdot 127^{5} + 81\cdot 127^{6} + 10\cdot 127^{7} + 75\cdot 127^{8} + 70\cdot 127^{9} + 5\cdot 127^{10} + 33\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 23 a^{2} + 11 a + 74 + \left(17 a^{2} + 89 a + 121\right)\cdot 127 + \left(112 a^{2} + 90 a + 40\right)\cdot 127^{2} + \left(92 a^{2} + 101 a + 107\right)\cdot 127^{3} + \left(52 a^{2} + 82 a + 110\right)\cdot 127^{4} + \left(26 a^{2} + 64 a + 2\right)\cdot 127^{5} + \left(41 a^{2} + 35 a + 13\right)\cdot 127^{6} + \left(117 a^{2} + 80 a + 57\right)\cdot 127^{7} + \left(95 a^{2} + 108 a + 61\right)\cdot 127^{8} + \left(107 a^{2} + 28 a + 29\right)\cdot 127^{9} + \left(125 a^{2} + 44 a + 36\right)\cdot 127^{10} + \left(27 a^{2} + 83 a + 93\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 36 a^{2} + 93 a + 100 + \left(28 a^{2} + 14 a + 16\right)\cdot 127 + \left(19 a^{2} + 78 a + 109\right)\cdot 127^{2} + \left(9 a^{2} + 67 a + 66\right)\cdot 127^{3} + \left(117 a^{2} + 70 a + 112\right)\cdot 127^{4} + \left(65 a^{2} + 13 a + 81\right)\cdot 127^{5} + \left(22 a^{2} + 19 a + 102\right)\cdot 127^{6} + \left(99 a^{2} + 84 a + 20\right)\cdot 127^{7} + \left(122 a^{2} + 2 a + 115\right)\cdot 127^{8} + \left(65 a^{2} + 72 a + 72\right)\cdot 127^{9} + \left(101 a^{2} + 103 a + 114\right)\cdot 127^{10} + \left(100 a^{2} + 111\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 50 a^{2} + 70 a + 56 + \left(125 a^{2} + 36 a + 93\right)\cdot 127 + \left(43 a^{2} + 117 a + 11\right)\cdot 127^{2} + \left(110 a^{2} + 112 a + 80\right)\cdot 127^{3} + \left(49 a^{2} + 105 a + 14\right)\cdot 127^{4} + \left(97 a^{2} + 111 a + 77\right)\cdot 127^{5} + \left(95 a^{2} + 80 a + 7\right)\cdot 127^{6} + \left(12 a^{2} + 56 a + 10\right)\cdot 127^{7} + \left(21 a^{2} + 68 a + 94\right)\cdot 127^{8} + \left(93 a^{2} + 98 a + 66\right)\cdot 127^{9} + \left(50 a^{2} + 109 a + 51\right)\cdot 127^{10} + \left(64 a^{2} + a + 60\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 68 a^{2} + 23 a + 37 + \left(81 a^{2} + 23 a + 123\right)\cdot 127 + \left(122 a^{2} + 85 a + 61\right)\cdot 127^{2} + \left(24 a^{2} + 84 a + 98\right)\cdot 127^{3} + \left(84 a^{2} + 100 a + 46\right)\cdot 127^{4} + \left(34 a^{2} + 48 a + 19\right)\cdot 127^{5} + \left(63 a^{2} + 72 a + 57\right)\cdot 127^{6} + \left(37 a^{2} + 89 a + 24\right)\cdot 127^{7} + \left(35 a^{2} + 15 a + 67\right)\cdot 127^{8} + \left(80 a^{2} + 26 a + 101\right)\cdot 127^{9} + \left(26 a^{2} + 106 a + 91\right)\cdot 127^{10} + \left(125 a^{2} + 42 a + 33\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 100 a^{2} + 27 a + 29 + \left(53 a^{2} + 3 a + 77\right)\cdot 127 + \left(3 a^{2} + 114 a + 57\right)\cdot 127^{2} + \left(55 a^{2} + 40 a + 96\right)\cdot 127^{3} + \left(35 a^{2} + 50 a + 112\right)\cdot 127^{4} + \left(74 a^{2} + 47 a + 30\right)\cdot 127^{5} + \left(72 a^{2} + 103 a + 88\right)\cdot 127^{6} + \left(4 a^{2} + 126 a + 120\right)\cdot 127^{7} + \left(10 a^{2} + 9 a + 71\right)\cdot 127^{8} + \left(a^{2} + 53 a + 9\right)\cdot 127^{9} + \left(22 a^{2} + 54 a + 121\right)\cdot 127^{10} + \left(61 a^{2} + 40 a + 53\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$
$r_{ 9 }$ $=$ $ 104 a^{2} + 30 a + 37 + \left(74 a^{2} + 87 a + 119\right)\cdot 127 + \left(79 a^{2} + 22 a + 82\right)\cdot 127^{2} + \left(88 a^{2} + 100 a + 36\right)\cdot 127^{3} + \left(41 a^{2} + 97 a + 125\right)\cdot 127^{4} + \left(82 a^{2} + 94 a + 46\right)\cdot 127^{5} + \left(85 a^{2} + 69 a + 114\right)\cdot 127^{6} + \left(109 a^{2} + 70 a + 76\right)\cdot 127^{7} + \left(95 a^{2} + 48 a + 116\right)\cdot 127^{8} + \left(32 a^{2} + 102 a + 72\right)\cdot 127^{9} + \left(54 a^{2} + 89 a + 58\right)\cdot 127^{10} + \left(a^{2} + 84 a + 61\right)\cdot 127^{11} +O\left(127^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,2)(6,8,9)$
$(1,3,2)(4,5,7)$
$(1,6,4)(2,8,5)(3,9,7)$
$(1,8)(2,6)(3,9)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,8)(2,6)(3,9)(4,5)$ $0$
$2$ $3$ $(1,2,3)(4,5,7)(6,8,9)$ $-3$
$3$ $3$ $(1,3,2)(4,5,7)$ $0$
$3$ $3$ $(1,2,3)(4,7,5)$ $0$
$6$ $3$ $(1,6,4)(2,8,5)(3,9,7)$ $0$
$6$ $3$ $(1,6,5)(2,8,7)(3,9,4)$ $0$
$6$ $3$ $(1,5,6)(2,7,8)(3,4,9)$ $0$
$9$ $6$ $(1,8,3,9,2,6)(4,7)$ $0$
$9$ $6$ $(1,6,2,9,3,8)(4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.