Properties

Label 6.2e6_1291e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 2^{6} \cdot 1291^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$137707850944= 2^{6} \cdot 1291^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 57 + 67\cdot 283 + 157\cdot 283^{2} + 9\cdot 283^{3} + 61\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 154 + 11\cdot 283 + 124\cdot 283^{2} + 196\cdot 283^{3} + 198\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 180 + 118\cdot 283 + 256\cdot 283^{2} + 131\cdot 283^{3} + 99\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 198 + 254\cdot 283 + 20\cdot 283^{2} + 86\cdot 283^{3} + 137\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 261 + 113\cdot 283 + 7\cdot 283^{2} + 142\cdot 283^{3} + 69\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.