Properties

Label 6.2e6_11e3_13e4.9t10.1c1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 2^{6} \cdot 11^{3} \cdot 13^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$2432940224= 2^{6} \cdot 11^{3} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 8 x^{7} - 14 x^{6} + 14 x^{5} - 16 x^{4} + 26 x^{3} - 6 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 163 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 163 }$: $ x^{3} + 7 x + 161 $
Roots:
$r_{ 1 }$ $=$ $ 64 + 117\cdot 163 + 40\cdot 163^{2} + 95\cdot 163^{3} + 135\cdot 163^{4} + 18\cdot 163^{5} + 105\cdot 163^{6} + 118\cdot 163^{7} + 46\cdot 163^{8} + 52\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 125 + 125\cdot 163 + 153\cdot 163^{2} + 5\cdot 163^{3} + 82\cdot 163^{4} + 150\cdot 163^{5} + 141\cdot 163^{6} + 5\cdot 163^{7} + 59\cdot 163^{8} + 36\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 138 + 82\cdot 163 + 131\cdot 163^{2} + 61\cdot 163^{3} + 108\cdot 163^{4} + 156\cdot 163^{5} + 78\cdot 163^{6} + 38\cdot 163^{7} + 57\cdot 163^{8} + 74\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 82 a + 19 + \left(42 a^{2} + 118 a + 33\right)\cdot 163 + \left(149 a^{2} + 19 a + 153\right)\cdot 163^{2} + \left(148 a^{2} + 4 a + 42\right)\cdot 163^{3} + \left(9 a^{2} + 64 a + 46\right)\cdot 163^{4} + \left(134 a^{2} + 59 a + 82\right)\cdot 163^{5} + \left(47 a^{2} + 113 a + 114\right)\cdot 163^{6} + \left(50 a^{2} + 42 a + 71\right)\cdot 163^{7} + \left(52 a^{2} + 39 a + 135\right)\cdot 163^{8} + \left(128 a^{2} + 78 a + 109\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 25 a^{2} + 86 a + 117 + \left(63 a^{2} + 151 a + 131\right)\cdot 163 + \left(128 a^{2} + 20 a + 55\right)\cdot 163^{2} + \left(130 a^{2} + 6 a + 121\right)\cdot 163^{3} + \left(41 a^{2} + 119 a + 140\right)\cdot 163^{4} + \left(24 a^{2} + 143 a + 58\right)\cdot 163^{5} + \left(85 a^{2} + 117 a + 71\right)\cdot 163^{6} + \left(157 a^{2} + 83 a + 137\right)\cdot 163^{7} + \left(137 a^{2} + 81 a + 154\right)\cdot 163^{8} + \left(112 a^{2} + 7 a + 91\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 44 a^{2} + 16 a + 97 + \left(103 a^{2} + 29 a + 101\right)\cdot 163 + \left(138 a^{2} + 14 a + 103\right)\cdot 163^{2} + \left(68 a^{2} + 49 a + 49\right)\cdot 163^{3} + \left(54 a^{2} + 147 a + 145\right)\cdot 163^{4} + \left(69 a^{2} + 26 a + 51\right)\cdot 163^{5} + \left(95 a^{2} + 4 a + 119\right)\cdot 163^{6} + \left(122 a^{2} + 72 a + 28\right)\cdot 163^{7} + \left(19 a^{2} + 144 a + 92\right)\cdot 163^{8} + \left(37 a^{2} + 58 a + 64\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 115 a^{2} + 65 a + 48 + \left(17 a^{2} + 15 a + 28\right)\cdot 163 + \left(38 a^{2} + 129 a + 69\right)\cdot 163^{2} + \left(108 a^{2} + 109 a + 70\right)\cdot 163^{3} + \left(98 a^{2} + 114 a + 134\right)\cdot 163^{4} + \left(122 a^{2} + 76 a + 28\right)\cdot 163^{5} + \left(19 a^{2} + 45 a + 92\right)\cdot 163^{6} + \left(153 a^{2} + 48 a + 62\right)\cdot 163^{7} + \left(90 a^{2} + 142 a + 98\right)\cdot 163^{8} + \left(160 a^{2} + 25 a + 151\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 150 a^{2} + 9 a + 157 + \left(158 a^{2} + 74 a + 143\right)\cdot 163 + \left(111 a^{2} + 72 a + 87\right)\cdot 163^{2} + \left(99 a^{2} + 12 a + 30\right)\cdot 163^{3} + \left(142 a^{2} + 44 a + 122\right)\cdot 163^{4} + \left(143 a^{2} + 66 a + 73\right)\cdot 163^{5} + \left(146 a^{2} + 64 a + 33\right)\cdot 163^{6} + \left(44 a^{2} + 75 a + 155\right)\cdot 163^{7} + \left(55 a^{2} + 55 a + 94\right)\cdot 163^{8} + \left(106 a^{2} + 10 a + 61\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 151 a^{2} + 68 a + 53 + \left(103 a^{2} + 100 a + 50\right)\cdot 163 + \left(85 a^{2} + 69 a + 19\right)\cdot 163^{2} + \left(95 a^{2} + 144 a + 11\right)\cdot 163^{3} + \left(141 a^{2} + 162 a + 63\right)\cdot 163^{4} + \left(157 a^{2} + 115 a + 30\right)\cdot 163^{5} + \left(93 a^{2} + 143 a + 58\right)\cdot 163^{6} + \left(123 a^{2} + 3 a + 33\right)\cdot 163^{7} + \left(132 a^{2} + 26 a + 76\right)\cdot 163^{8} + \left(106 a^{2} + 145 a + 9\right)\cdot 163^{9} +O\left(163^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,7,3,5,4,2,8,6)$
$(2,3)(4,9)(5,7)(6,8)$
$(1,3,2)(4,7,6)$
$(4,6,7)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$6$
$9$$2$$(1,7)(2,4)(3,6)(5,9)$$0$
$2$$3$$(1,3,2)(4,6,7)(5,8,9)$$-3$
$3$$3$$(1,3,2)(4,7,6)$$0$
$3$$3$$(1,2,3)(4,6,7)$$0$
$9$$6$$(1,4,3,7,2,6)(5,9)$$0$
$9$$6$$(1,6,2,7,3,4)(5,9)$$0$
$6$$9$$(1,9,7,3,5,4,2,8,6)$$0$
$6$$9$$(1,7,5,2,6,9,3,4,8)$$0$
$6$$9$$(1,8,7,3,9,4,2,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.