Properties

Label 6.2e4_7e3_67e4.18t51.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{4} \cdot 7^{3} \cdot 67^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$110589352048= 2^{4} \cdot 7^{3} \cdot 67^{4} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + x^{7} + 2 x^{6} + 3 x^{4} - 3 x^{3} - 5 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{3} + 5 x + 105 $
Roots:
$r_{ 1 }$ $=$ $ 35 + 19\cdot 107 + 8\cdot 107^{2} + 80\cdot 107^{3} + 45\cdot 107^{5} + 22\cdot 107^{6} + 87\cdot 107^{7} + 69\cdot 107^{8} + 107^{9} + 69\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 68 + 98\cdot 107 + 28\cdot 107^{2} + 76\cdot 107^{3} + 104\cdot 107^{4} + 97\cdot 107^{5} + 34\cdot 107^{6} + 39\cdot 107^{7} + 27\cdot 107^{8} + 73\cdot 107^{9} + 105\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 70 + 30\cdot 107 + 44\cdot 107^{2} + 22\cdot 107^{3} + 44\cdot 107^{4} + 102\cdot 107^{5} + 73\cdot 107^{6} + 15\cdot 107^{7} + 91\cdot 107^{8} + 5\cdot 107^{9} + 14\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 10 a^{2} + 41 a + 62 + \left(71 a^{2} + 46 a + 19\right)\cdot 107 + \left(106 a^{2} + 96 a + 64\right)\cdot 107^{2} + \left(100 a^{2} + 93 a + 65\right)\cdot 107^{3} + \left(46 a^{2} + 96 a + 75\right)\cdot 107^{4} + \left(98 a^{2} + 43 a + 105\right)\cdot 107^{5} + \left(82 a^{2} + 12 a + 74\right)\cdot 107^{6} + \left(56 a^{2} + 59 a + 65\right)\cdot 107^{7} + \left(37 a^{2} + 81 a + 2\right)\cdot 107^{8} + \left(72 a^{2} + 30 a + 91\right)\cdot 107^{9} + \left(63 a^{2} + 101 a + 11\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 44 a^{2} + 28 a + 104 + \left(105 a^{2} + 93 a + 26\right)\cdot 107 + \left(57 a^{2} + 47 a + 80\right)\cdot 107^{2} + \left(55 a^{2} + 25 a + 56\right)\cdot 107^{3} + \left(70 a^{2} + 83 a + 11\right)\cdot 107^{4} + \left(51 a^{2} + 104 a + 21\right)\cdot 107^{5} + \left(47 a^{2} + 34 a + 28\right)\cdot 107^{6} + \left(98 a^{2} + 57 a + 26\right)\cdot 107^{7} + \left(87 a^{2} + 22 a + 99\right)\cdot 107^{8} + \left(67 a^{2} + 32 a + 75\right)\cdot 107^{9} + \left(13 a^{2} + 94 a + 94\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 45 a^{2} + 34 a + 100 + \left(a^{2} + 96 a + 29\right)\cdot 107 + \left(2 a^{2} + 16 a + 21\right)\cdot 107^{2} + \left(103 a^{2} + 84 a + 91\right)\cdot 107^{3} + \left(24 a^{2} + 11 a + 42\right)\cdot 107^{4} + \left(45 a^{2} + 16 a + 77\right)\cdot 107^{5} + \left(38 a^{2} + 28 a + 71\right)\cdot 107^{6} + \left(18 a^{2} + 102 a + 101\right)\cdot 107^{7} + \left(7 a^{2} + 101 a + 47\right)\cdot 107^{8} + \left(57 a^{2} + 76 a + 99\right)\cdot 107^{9} + \left(88 a^{2} + 68 a + 75\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 53 a^{2} + 38 a + 27 + \left(37 a^{2} + 74 a + 50\right)\cdot 107 + \left(49 a^{2} + 69 a + 51\right)\cdot 107^{2} + \left(57 a^{2} + 94 a + 27\right)\cdot 107^{3} + \left(96 a^{2} + 33 a + 98\right)\cdot 107^{4} + \left(63 a^{2} + 65 a + 61\right)\cdot 107^{5} + \left(83 a^{2} + 59 a + 41\right)\cdot 107^{6} + \left(58 a^{2} + 97 a + 72\right)\cdot 107^{7} + \left(88 a^{2} + 2 a + 65\right)\cdot 107^{8} + \left(73 a^{2} + 44 a + 24\right)\cdot 107^{9} + \left(29 a^{2} + 18 a + 41\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 64 a^{2} + 72 a + 92 + \left(15 a^{2} + 55 a + 5\right)\cdot 107 + \left(25 a^{2} + 16 a + 27\right)\cdot 107^{2} + \left(36 a^{2} + 11 a + 11\right)\cdot 107^{3} + \left(11 a^{2} + 93 a + 33\right)\cdot 107^{4} + \left(98 a^{2} + 23 a + 75\right)\cdot 107^{5} + \left(46 a^{2} + 13 a + 28\right)\cdot 107^{6} + \left(94 a^{2} + 84 a + 34\right)\cdot 107^{7} + \left(49 a^{2} + 18 a + 83\right)\cdot 107^{8} + \left(4 a^{2} + 54 a + 66\right)\cdot 107^{9} + \left(99 a^{2} + 62 a + 39\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 105 a^{2} + a + 86 + \left(89 a^{2} + 62 a + 39\right)\cdot 107 + \left(79 a^{2} + 73 a + 102\right)\cdot 107^{2} + \left(74 a^{2} + 11 a + 103\right)\cdot 107^{3} + \left(70 a^{2} + 2 a + 16\right)\cdot 107^{4} + \left(70 a^{2} + 67 a + 55\right)\cdot 107^{5} + \left(21 a^{2} + 65 a + 51\right)\cdot 107^{6} + \left(101 a^{2} + 27 a + 92\right)\cdot 107^{7} + \left(49 a^{2} + 93 a + 47\right)\cdot 107^{8} + \left(45 a^{2} + 82 a + 96\right)\cdot 107^{9} + \left(26 a^{2} + 82 a + 82\right)\cdot 107^{10} +O\left(107^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(4,6)(5,8)(7,9)$
$(4,7,5)(6,8,9)$
$(2,3)(4,5)(6,8)$
$(1,3,2)(4,5,7)(6,8,9)$
$(1,5,8)(2,4,6)(3,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,3)(5,7)(6,9)$ $0$
$9$ $2$ $(4,6)(5,8)(7,9)$ $-2$
$9$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$
$2$ $3$ $(1,3,2)(4,5,7)(6,8,9)$ $-3$
$6$ $3$ $(1,8,4)(2,6,7)(3,9,5)$ $0$
$6$ $3$ $(1,3,2)(4,7,5)$ $0$
$12$ $3$ $(1,5,8)(2,4,6)(3,7,9)$ $0$
$18$ $6$ $(1,4,8)(2,5,6,3,7,9)$ $0$
$18$ $6$ $(1,3,2)(4,8,7,6,5,9)$ $1$
$18$ $6$ $(1,4,3,7,2,5)(6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.