Properties

Label 6.2e4_7e3_101e2.9t18.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{4} \cdot 7^{3} \cdot 101^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$55983088= 2^{4} \cdot 7^{3} \cdot 101^{2} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 5 x^{7} - x^{6} + x^{5} - 10 x^{4} + 10 x^{3} + 5 x^{2} - 7 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{3} + 6 x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 33 a^{2} + 4 a + 2 + \left(29 a^{2} + 32 a + 5\right)\cdot 37 + \left(33 a^{2} + 13 a + 34\right)\cdot 37^{2} + \left(7 a^{2} + 15 a + 16\right)\cdot 37^{3} + \left(21 a^{2} + 2 a\right)\cdot 37^{4} + \left(26 a^{2} + 8 a + 13\right)\cdot 37^{5} + \left(6 a + 23\right)\cdot 37^{6} + \left(24 a^{2} + 5 a + 6\right)\cdot 37^{7} + \left(30 a^{2} + 32 a + 24\right)\cdot 37^{8} + \left(36 a^{2} + 21 a + 28\right)\cdot 37^{9} + \left(26 a^{2} + 22 a + 35\right)\cdot 37^{10} + \left(7 a^{2} + 15 a + 24\right)\cdot 37^{11} + \left(9 a^{2} + 36 a + 26\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 17 a^{2} + \left(25 a^{2} + 20 a + 2\right)\cdot 37 + \left(10 a^{2} + 7 a + 29\right)\cdot 37^{2} + \left(33 a^{2} + 23 a + 32\right)\cdot 37^{3} + \left(7 a^{2} + 34 a + 26\right)\cdot 37^{4} + \left(25 a^{2} + 6 a + 31\right)\cdot 37^{5} + \left(36 a^{2} + 10 a + 6\right)\cdot 37^{6} + \left(23 a + 30\right)\cdot 37^{7} + \left(24 a^{2} + 16 a + 28\right)\cdot 37^{8} + \left(5 a^{2} + 34 a + 32\right)\cdot 37^{9} + \left(2 a^{2} + 20\right)\cdot 37^{10} + \left(2 a^{2} + 23 a + 16\right)\cdot 37^{11} + \left(27 a^{2} + 6 a + 30\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 16 a + 30 + \left(3 a^{2} + 9 a + 23\right)\cdot 37 + \left(10 a^{2} + 19 a + 26\right)\cdot 37^{2} + \left(22 a^{2} + 8 a + 25\right)\cdot 37^{3} + \left(14 a^{2} + 16 a + 16\right)\cdot 37^{4} + \left(10 a^{2} + 8 a + 9\right)\cdot 37^{5} + \left(4 a^{2} + 11 a + 25\right)\cdot 37^{6} + \left(21 a^{2} + 15 a + 36\right)\cdot 37^{7} + \left(7 a^{2} + 6 a + 36\right)\cdot 37^{8} + \left(28 a^{2} + 3 a + 11\right)\cdot 37^{9} + \left(11 a^{2} + 14 a + 22\right)\cdot 37^{10} + \left(12 a^{2} + 11 a + 20\right)\cdot 37^{11} + \left(36 a^{2} + 33 a + 30\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 34 a^{2} + 3 a + 6 + \left(19 a^{2} + 15 a + 2\right)\cdot 37 + \left(30 a^{2} + 22 a + 21\right)\cdot 37^{2} + \left(14 a^{2} + 30 a + 7\right)\cdot 37^{3} + \left(32 a^{2} + 35 a + 8\right)\cdot 37^{4} + \left(28 a^{2} + 3 a + 22\right)\cdot 37^{5} + \left(9 a^{2} + 2 a + 22\right)\cdot 37^{6} + \left(16 a^{2} + 3 a + 12\right)\cdot 37^{7} + \left(14 a^{2} + 19 a + 33\right)\cdot 37^{8} + \left(15 a^{2} + 15 a + 16\right)\cdot 37^{9} + \left(30 a^{2} + 3 a + 12\right)\cdot 37^{10} + \left(9 a^{2} + 33\right)\cdot 37^{11} + \left(3 a^{2} + 17 a + 2\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 21 a + 25 + \left(8 a^{2} + 7 a + 7\right)\cdot 37 + \left(16 a^{2} + 10 a + 14\right)\cdot 37^{2} + \left(18 a^{2} + 5 a + 10\right)\cdot 37^{3} + \left(14 a^{2} + 23 a + 16\right)\cdot 37^{4} + \left(a^{2} + 21 a + 10\right)\cdot 37^{5} + \left(33 a^{2} + 15 a + 29\right)\cdot 37^{6} + \left(14 a^{2} + 35 a + 11\right)\cdot 37^{7} + \left(5 a^{2} + 13 a + 28\right)\cdot 37^{8} + \left(3 a^{2} + 36 a + 22\right)\cdot 37^{9} + \left(23 a^{2} + 21 a + 30\right)\cdot 37^{10} + \left(22 a^{2} + 2 a + 24\right)\cdot 37^{11} + \left(10 a^{2} + 34 a + 1\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 15 + 37 + 22\cdot 37^{2} + 3\cdot 37^{3} + 31\cdot 37^{4} + 36\cdot 37^{5} + 34\cdot 37^{6} + 22\cdot 37^{7} + 19\cdot 37^{8} + 20\cdot 37^{9} + 11\cdot 37^{10} + 22\cdot 37^{11} + 12\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 30 + 19\cdot 37 + 20\cdot 37^{2} + 24\cdot 37^{3} + 33\cdot 37^{4} + 28\cdot 37^{5} + 19\cdot 37^{6} + 18\cdot 37^{7} + 24\cdot 37^{8} + 13\cdot 37^{9} + 26\cdot 37^{10} + 34\cdot 37^{11} +O\left(37^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 35 + 29\cdot 37 + 5\cdot 37^{2} + 21\cdot 37^{3} + 17\cdot 37^{4} + 14\cdot 37^{5} + 7\cdot 37^{6} + 9\cdot 37^{8} + 32\cdot 37^{9} + 30\cdot 37^{10} + 9\cdot 37^{11} + 28\cdot 37^{12} +O\left(37^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 7 a^{2} + 30 a + 9 + \left(24 a^{2} + 26 a + 19\right)\cdot 37 + \left(9 a^{2} + 11\right)\cdot 37^{2} + \left(14 a^{2} + 28 a + 5\right)\cdot 37^{3} + \left(20 a^{2} + 35 a + 34\right)\cdot 37^{4} + \left(18 a^{2} + 24 a + 17\right)\cdot 37^{5} + \left(26 a^{2} + 28 a + 15\right)\cdot 37^{6} + \left(33 a^{2} + 28 a + 8\right)\cdot 37^{7} + \left(28 a^{2} + 22 a + 17\right)\cdot 37^{8} + \left(21 a^{2} + 36 a + 5\right)\cdot 37^{9} + \left(16 a^{2} + 10 a + 31\right)\cdot 37^{10} + \left(19 a^{2} + 21 a + 34\right)\cdot 37^{11} + \left(24 a^{2} + 20 a + 13\right)\cdot 37^{12} +O\left(37^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,9)(6,8,7)$
$(1,2,6)(3,7,4)(5,8,9)$
$(3,5)(4,9)(6,7)$
$(2,5,3)(6,7,8)$
$(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,6)(3,7)(5,8)$ $2$
$9$ $2$ $(2,8)(3,7)(4,9)(5,6)$ $0$
$9$ $2$ $(3,5)(4,9)(6,7)$ $0$
$2$ $3$ $(1,9,4)(2,5,3)(6,8,7)$ $-3$
$6$ $3$ $(1,4,9)(6,8,7)$ $0$
$6$ $3$ $(1,5,6)(2,7,4)(3,8,9)$ $0$
$12$ $3$ $(1,2,6)(3,7,4)(5,8,9)$ $0$
$18$ $6$ $(1,4,9)(2,8,5,7,3,6)$ $-1$
$18$ $6$ $(2,7,5,8,3,6)(4,9)$ $0$
$18$ $6$ $(1,2,6,4,5,7)(3,8,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.