Properties

Label 6.2e4_55009e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 55009^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$2663307013851664= 2^{4} \cdot 55009^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 11 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 38\cdot 83 + 44\cdot 83^{2} + 73\cdot 83^{3} + 46\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 9\cdot 83 + 43\cdot 83^{2} + 33\cdot 83^{3} + 35\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 72\cdot 83 + 68\cdot 83^{2} + 58\cdot 83^{3} + 48\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 + 72\cdot 83 + 42\cdot 83^{2} + 51\cdot 83^{3} + 52\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 55\cdot 83 + 49\cdot 83^{2} + 31\cdot 83^{3} + 65\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.